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This is a review of the theoretical and applied progress made based on the Constructal law of design

and evolution in nature, with emphasis on the last decade. The Constructal law is the law of physics

that accounts for the natural tendency of all flow systems (animate and inanimate) to change into

configurations that offer progressively greater flow access over time. The progress made with the

Constructal law covers the broadest range of science, from heat and fluid flow and geophysics, to

animal design, technology evolution, and social organization (economics, government). This review

presents the state of this fast growing field, and draws attention to newly opened directions for

original research. The Constructal law places the concepts of life, design, and evolution in physics.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798429]
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I. CONSTRUCTAL LAW

A law of physics is a concise statement that summarizes

a phenomenon that occurs in nature. The Constructal-law field

started from the realization that “design” is a universal

physics phenomenon. It unites the animate with the inanimate

over an extremely broad range of scales, from the tree design

of the snowflake, to animal design and the tree design of the

Amazon river basin. Figure 1 makes this point with just two

examples of the same volume-point flow architecture, one in-

animate and the other animate, to which we could have added

many more (e.g., lightning, vascularized living tissues, city

traffic, the spreading of new ideas on the globe).

The concepts of life, design, and future (evolution) were

placed firmly in physics by the Constructal law, stated in

1996:1,2

“For a finite-size flow system to persist in time (to live),

its configuration must evolve in such a way that provides

greater and greater access to the currents that flow

through it.”

According to the Constructal law, a live system is one

that has two universal characteristics: It flows (i.e., it is a

nonequilibrium system in thermodynamics), and it morphs

freely toward configurations that allow all its currents to

flow more easily over time. Life and evolution are a physics

phenomenon, and they belong in physics.1,3

The Constructal law is a field that is expanding rapidly

in physics, biology, technology, and social sciences. We

reviewed the field in 2006,4 and now the field is expanding

even more rapidly. No less than 14 books have been pub-

lished on the Constructal law since 2006.5–18 On April 3,

2013, the entry “constructal” on ISI (Institute of Scientific

Information) revealed an h index of 39 and a total number of

6915 citations. On Google Scholar, the word “constructal”

yielded 2310 articles and books. The objective of the present

review is to outline the current state of this fast growing

research activity with special focus on the post-2006

literature.

To see the position of design in nature as a universal

phenomenon of physics, it is necessary to recall that ther-

modynamics rests mainly on two laws, which are both “first

principles.” The first law commands the conservation of

energy in any system. The second law commands the pres-

ence of irreversibility (i.e., the generation of entropy) in

any system: By itself, any stream flows naturally one way,
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from high to low. The permanence and extreme generality

of the two laws are consequences of the fact that in thermo-

dynamics the “any system” is a black box. It is a region of

space, or a collection of matter without specified shape and

structure. The two laws are global statements about the bal-

ance or imbalance of the flows (mass, heat, work, entropy)

that flow into and out of the black box.

Nature is not made of boxes without configuration

(Fig. 1). The systems that we discern in nature have shape

and structure. They are macroscopic, finite size, and recog-

nizable as patterns—sharp lines on a diffuse background.

They have configurations, maps, rhythms, and sounds. They

are simple: Their complexity is modest, because if it were

not modest we would not be able to discern them and to

question their existence. The very fact that they have names

(river basins, blood vessels, trees) indicates that they have

unmistakable appearances.

Reference 1 drew attention to the fact that the laws of

thermodynamics do not account completely for the systems

of nature, even though scientists have built thermodynamics

into thick books in which the two laws are just the introduc-

tion. The body of thermodynamics is devoted to describing,

designing, and optimizing things that seem to correspond to

systems found in nature, or to devices that can be used by

humans to make life easier. Nowhere is this more evident

than in engineering, where the method of entropy generation

minimization19,20 is recognized as thermodynamics, even

though neither of the two laws accounts for the natural

occurrence of “design” or “optimization” phenomena.

If physics is to account for the systems of nature com-
pletely, then thermodynamics must be strengthened with an

additional self-standing law (i.e., with another first principle)

that covers all phenomena of design occurrence and evolu-

tion. This addition to physics is the Constructal law.1

The Constructal law is not a statement of optimization,

maximization, minimization, or any other mental image of

“end design” or “destiny.” The Constructal law is about the

direction of evolution in time, and the fact that the design

phenomenon is not static: It is dynamic, ever changing, like

the images in a movie at the cinema. Evolution never ends.

This is important to keep in mind, because there is a growing

list of ad hoc proposals of optimality (end-design), but each

addresses a narrow domain, and, as a consequence, the body

of optimality statements that have emerged is self-

contradictory, and the claim that each is a general principle

is easy to refute:21

(i) Minimum entropy generation (production) and maxi-

mum efficiency are used commonly in engineering

and biology.

(ii) Maximum entropy production (MEP) is being invoked

in geophysics.

(iii) Maximum “fitness” and “adaptability” (robustness,

resilience) are used in biology.

(iv) Minimum flow resistance (fluid flow, heat transfer,

mass transfer) is invoked in engineering, river mechan-

ics, and physiology.

(v) Maximum flow resistance is used regularly in physiol-

ogy and engineering, e.g., maximum resistance to loss

of body heat through animal hair and fur, or through the

insulation of power and refrigeration plants, the mini-

mization of fluid leaks through the walls of ducts, etc.

(vi) Minimum travel time is used in urban design, traffic,

and transportation.

(vii) Minimum effort and cost is a core idea in social dy-

namics and animal design.

(viii) Maximum profit and utility is used in economics.

(ix) Maximum territory is used for rationalizing the

spreading of living species, deltas in the desert, and

empires.

(x) Uniform distribution of maximum stresses is used as

an “axiom” in rationalizing the design of botanical

trees and animal bones.

(xi) Maximum growth rate of flow disturbances (deforma-

tions) is invoked in the study of fluid flow disturban-

ces and turbulence.

(xii) Maximum power was proposed in biology, physics,

and engineering.

The optimality statements are contradictory and dis-

united, yet they demonstrate that the time for placing the

“design” phenomena in science is now. The progress made

with the Constructal law21–24 shows that the diversity of

phenomena addressed with the ad hoc statements (i)–(xii)

are manifestations of the single natural tendency that is

expressed by this law of physics. For example, the contra-

diction between (i) minimum and (ii) MEP was resolved

based on the Constructal law in 2006:25 Both (i) and (ii) are

covered by the Constructal law.

The reach of the Constructal law was broadened by the

concept of the flow of stresses,9,26 which accounts for the

emergence of solid shapes and structures in vegetation, skel-

eton design, and technology. The flow of stresses is an inte-

gral part of the design-generation phenomenon of moving

mass more and more easily on the landscape.

The Constructal law can be used to fast-forward design

in engineering and social organization, cf. Secs. VIII–XI.

This is useful, but the imagined end design (min, max)

FIG. 1. Design is a universal phenomenon in nature. It is physics. It happens

naturally when something is flowing and it is free to morph. Design unites

the animate with the inanimate. The left side shows the delta of the Lena

River in northern Siberia. The right side shows a cast of the human lung.

Courtesy of Ewald Weibel, Professor Emeritus of Anatomy, University of

Bern.

151301-2 A. Bejan and S. Lorente J. Appl. Phys. 113, 151301 (2013)



neither is reachable in nature nor it is to be confused with the

phenomenon and the law of physics, which is the natural

tendency (the direction in time) that points to it. The time

direction is the natural phenomenon, and the law of physics

that governs this natural phenomenon is the Constructal law.

II. TREE-SHAPED DESIGNS: CONDUCTION, FLUID
FLOW, AND CONVECTION

The Constructal law statement is general. It does not use

words such as tree, complex versus simple, or natural versus

engineered. There are several classes of flow configurations

in nature, and each class can be derived from the Constructal

law in several ways: analytically or numerically, approxi-

mately or more accurately, blindly (random search) or using

strategy (shortcuts), and so on. Classes that our group treated

in detail, and by several methods, are the cross-sectional

shapes of ducts, the cross-sectional shapes of rivers, internal

spacings, and tree-shaped architectures.

Regarding the tree architectures, we treated them not as

models but as fundamental problems of access to flow: vol-

ume to point, area to point, line to point, and the respective

reverse flow directions. Important is the geometric notion that

the “volume,” the “area,” and the “line” represent infinities of

points.

The theoretical discovery of trees stems from the decision

to connect one point (source, or sink) with an infinity of points

(volume, area, line). It is the reality of the continuum (the infin-

ity of points) that is routinely discarded by modelers who ap-

proximate the space with a finite number of discrete points and

then cover the space with drawings made of sticks, which cover

the space incompletely (and from this, fractal geometry). The

reality of the continuum requires a study of the interstitial

spaces between the tree links. The interstices can only be

bathed by high-resistivity diffusion (an invisible, disorganized

flow), whereas the tree links serve as conduits for low-

resistivity organized flow (visible streams, ducts).

The two modes of flowing with imperfection (irreversi-

bility), the interstices and the links, must be balanced so that

together they ease the global flow. The flow architecture is

the graphical expression of the balance between channels

and their interstices. The deduced architecture (tree, duct

shape, spacing, etc.) is the distribution of imperfection over

the available flow space. It is the architecture for access into

and out of the flow space, which is finite. Those who model

natural trees and then draw them as black lines on white pa-

per (while not struggling to discover the layout of every

black line on its allocated white patch) miss half of the draw-

ing. The white is as important as the black.

The Constructal-law discovery of tree-shaped flow

architectures was based on three approaches. It started in

1996 with an analytical shortcut1,2 based on several simplify-

ing assumptions: 90 angles between stem and tributaries, a

construction sequence in which smaller optimized constructs

are retained, constant-thickness branches, and so on. Months

later, we solved the same problem numerically27 by aban-

doning most of the simplifying assumptions (e.g., the con-

struction sequence) used in the first papers. In 1998, we

reconsidered the problem in an area-point flow domain with

randomly moving low-resistivity blocks embedded in a high-

resistivity background28,29 with Darcy flow (permeability

instead of conductivity and resistivity). Along the way, we

found better performance and trees that look more “natural”

as we progress in time, that is, as we endowed the flow struc-

ture with more freedom to morph.

Figure 2 shows the most recent tree design for conduc-

tion in a heat generating medium with high-conductivity

channels that are the most free to morph.30 Darcy fluid flow

is one form of “diffusion,” i.e., the same physics phenom-

enon as thermal diffusion (Fourier conduction) and electrical

diffusion (Ohm conduction). Yet, it is becoming fashionable

to take the original work28,29 (e.g., Fig. 3), and publish it as

new after replacing one diffusion terminology with another.

The constructal literature is expanding rapidly in the do-

main of tree-shaped designs for conduction,31–36 fluid

flow,37–45 and convective heat transfer.46–50 A central feature

of these designs is the notion that when channels bifurcate or

coalesce their diameters should change by certain factors, so

that the overall flow through the architecture is facilitated.

The best known design rule of this kind is the Hess-Murray

rule (D1/D2¼ 21/3) for selecting the ratio of channel diame-

ters at a bifurcation.9 This rule was extended by constructal

design in several directions: to junctions with n branches (D1/

D2¼ n1/3), to bifurcations with two identical branches (length

L2, diameter D2), and one stem (L1, D1) on an area of fixed

size (L1� 2L2) in fully developed laminar flow,9

D1

D2

¼ 21=3;
L1

L2

¼ 21=3; (1)

and fully developed turbulent flow,9

D1

D2

¼ 23=7;
L1

L2

¼ 21=7; (2)

and to bifurcations with unequal branches (L2, D2 and L3,

D3) (problem 4.4 in Ref. 9). All these developments come

from evolving the flow configuration in accord with the

FIG. 2. Constructal invasion of a conducting tree into a conducting body.

151301-3 A. Bejan and S. Lorente J. Appl. Phys. 113, 151301 (2013)



Constructal law, toward providing greater access, which led

analytically to minimal flow resistance in T- and Y-shaped

(and more complicated) constructs of tubes and other chan-

nels, as in the trees matched canopy to canopy of Ref. 51.

Here, we point out that the uniform distribution of

imperfection in the constructal design [Eqs. (1) and (2)] is

the same as the uniform distribution of fluid residence time

in the channels. This means that the time (t1) spent by the

fluid in the D1 tube is the same as the time (t2) spent in the

D2 tube. The residence time in any tube is t�L/U�LD2/ _m,

where U and _m are the mean fluid speed and mass flow rate,

respectively. Next, at a bifurcation we note _m2= _m1 ¼ 1=2,

and with the laminar flow architecture of Eq. (1) we obtain

t1

t2

� L1

L2

_m2

_m1

D2
1

D2
2

¼ 21=3 1

2
ð21=3Þ2 ¼ 1: (3)

Similarly, for the turbulent flow design of Eq. (2) we obtain

t1

t2

� L1

L2

_m2

_m1

D2
1

D2
2

¼ 21=7 1

2
ð23=7Þ2 ¼ 1: (4)

Svelteness9 is a new property of flow architectures, which

was brought to light by the constructal design of flow archi-

tectures. The svelteness Sv is the ratio of the external length

scale of the flow design (for example, A1/2, if the area of the

flow layout is A) divided by the internal length scale of the

flow design (for example, V1/3, if the total volume occupied

by the flow is V). A flow architecture has three main charac-

teristic: sizes, aspect ratios (shapes), and svelteness, i.e., the

relative thinness of the lines of its drawing. Svelteness is inti-

mately tied to the flow performance of the architecture.9,52

III. COMPACT HEAT AND MASS TRANSFER

A major field of applied research for Constructal-design

architectures is the development of compact (high density)

architectures for heat and mass transfer. This activity began

with the discovery of optimal spacings for channels with nat-

ural53 and forced54 convection (for a review, see Ref. 9), and

the development of tree-shaped heat exchangers for high

heat transfer density in a confined space.55 Today, this activ-

ity continues on several fronts.

Fins, or extended solid surfaces, were developed most

recently in Refs. 56–65. Lorenzini, Biserni, and Rocha66,67

pioneered the field of “inverted fins,” which are cavities with

particular architectures (tree-, T-, H-shaped) built into solid

walls for the purpose of enhancing the convective thermal

contact between the wall and the surrounding fluid flow.

Spacings for natural and forced convection were

reported by Bello-Ochende, Meyer and coworkers,68–71

Canhoto and Reis,72 Gosselin and coworkers,73,74

Narasimhan and coworkers,75,76 Zamfirescu and Dincer,77

as well as by Refs. 78–83.

The dendritic heat exchanger proposed in Ref. 55 was

designed, built, and tested by Raja et al.84 Heat exchanger

structures for fuel cells were reported in Refs. 77 and

85–87. Desalination, humidification, and dehumidification

applications were studied by Mehrgoo and Amidpour.88,89

Microreactors were developed by Mathieu-Potvin and

Gosselin90 and Chen et al.91 Microfluidic structures were

studied by da Silva and coworkers.92,93 Constructal design

continues to be used in more classical applications such as

shell and tube heat exchangers,94 furnaces,95 reactors96–99

and distributors,100–102 and maximum heat transfer den-

sity.103,104 Boiling in dendritic channels was proposed by

Bonjour and coworkers105,106 and Liu et al.107

Industrial applications of constructal design were

reported for steam generators,108,109 steam turbines,110 furna-

ces for heating streams of solid metal,111,112 cross-flow heat

exchangers,113 and solar power plants.114–117 In particular, the

configuration of a slender enclosure can be optimized such

that the radiation heating of a stream of solid is performed

with minimal fuel consumption at the global level. The solid

moves longitudinally at constant rate through the enclosure.

The enclosure is heated by gas burners distributed arbitrarily,

in a manner that is to be determined. The total contact area for

heat transfer between the hot enclosure and the cold solid is

FIG. 3. Darcy flow on a square domain with low permeability (K) and high

permeability (Kp). In time, K grains are searched and replaced by Kp grains

such that the overall area-to-point flow access is increased the fastest.

Courtesy of Professor Marcelo R. Errera, Federal University of Parana,

Brazil.
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fixed. The minimal global fuel consumption is achieved when

the longitudinal distribution of heaters is nonuniform, with

more heaters near the exit than the entrance. The reduction in

fuel consumption relative to when the heaters are distributed

uniformly is of order 10%. Tapering the plan view (the floor)

of the heating area yields an additional reduction in overall

fuel consumption. The best shape is when the floor area is a

slender triangle on which the cold solid enters by crossing the

base, Fig. 4. These architectural features recommend the pro-

posal to organize the flow of the solid as a dendritic design,

which enters as several branches and exits as a single hot

stream of prescribed temperature.112

IV. VASCULAR DESIGN

A distinct trend in constructal design is the development

of vascular flow architectures, which fill bodies (structural

members) and endow them with volumetrically distributed

functions such as self-healing118,119 and self-cooling.120 This

work is driven by applications in smart materials, smart

structures, the design of future aircraft,121 and the cooling of

progressively more compact electronics.

On the fundamental side, the key question is why should

a “vascular” flow architecture emerge in the animal, and in

the engineered smart body? “Vascular” means that the

stream bathes the entire volume almost uniformly, by flow-

ing as two trees matched canopy to canopy.122 First, the

stream enters the volume by distributing its flow like a river

delta. Second, the stream reconstitutes itself and flows out of

the volume like a river basin.

Kim et al.123 showed that tree-tree architectures recom-

mend themselves for all the volumes bathed by single streams

in laminar flow, and that in larger volumes each tree must

have more levels of branching or coalescence. Cetkin et al.124

demonstrated the same trend for trees with turbulent flow.

Figures 5 and 6 summarize these findings, for both laminar

and turbulent flow. The size of the volume is represented by

the number n, which is the number of elemental volumes

bathed by a single capillary stream ( _me, Fig. 5). The construc-

tion steps (1), (2), and (3) of Fig. 5 illustrate how the tree-tree

volume acquires a more complex architecture as the number

of branching levels increases. The total mass flow rate is

fixed. Figure 6 shows how the relative pressure drop DP/DP1

decreases as the size (n) increases. This decrease is possible

only if the architecture is free to change abruptly from (1), to

(2), and (3). The evolution toward better flow performance in

larger systems must be stepwise (revolutionary), not gradual.

The vascular design literature is expanding rapidly, from

architectures for self-healing125,126 to trees matched canopy

to canopy in vascular bodies.127–136 Thermal characteristics

and the heat transfer performance of vascular designs are

documented in Refs. 137–144. Vascular porous structures

were designed for electrokinetic mass transfer in Ref. 145,

and for heat transfer in biological tissues in Refs. 146–149.

Vascular designs for cooling a plate heated by a randomly

moving energy beam were developed by Cetkin et al.150

V. THE FLOW OF STRESSES

Design occurs in nature not only in fluid flow systems

such as river basins and human lungs (Fig. 1) but also in

solid structures such as animal skeletons,151 vegetation,26

and bodies of vehicles.152 Solid structures were brought

under the Constructal law by the view that they are bodies

shaped for the flow of stresses.9,26 When stresses flow from

one end to the other of a structural member without obstacles

(strangulations, stress concentrations), the member carries

the imposed load with minimum material. The easiest flow

of stresses means the lightest and strongest member, and the

most efficient animal or vehicle that uses that member as

support structure. At bottom, the constructal design of the

flow of stresses in solids is a manifestation of the grand con-

structal design of the flow of mass on the globe.

The flow of stresses as a morphing flow system was pro-

posed9,26 in order to predict the entire architecture of vegeta-

tion, from roots to trunks, canopies, and the floor of the

forest. Since then, the flow of stresses has become an integral

part of constructal design.9 Plates can be shaped (tapered) so

that stresses flow through them in “boundary layer” fash-

ion.153 Bars and linkages in compression and buckling can

be shaped and sized so that they carry their loads with mini-

mal material. The vascular designs for volumetric cooling

(Sec. IV) can be complemented by the shaping and distribut-

ing of channels for maximum strength and thermal perform-

ance at the same time.154–156

VI. ANIMAL DESIGN AND SPORTS EVOLUTION

The Constructal law and the global design of nature con-

stitute a unified view of evolution. This theoretical view

FIG. 4. The distribution of the flow of steel on the furnace floor: uniform den-

sity, on a floor with uniform width (top) and increasing density, on triangular

floors (middle and bottom). The total flow rate and the floor area are the same

in each drawing. The lower three drawings show the distribution of overhead

heaters on the area occupied by the upper three designs.112 Reprinted with per-

mission from J. Appl. Phys. 107, 114910 (2010). Copyright 2010 American

Institute of Physics.
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predicts evolution in all the diverse domains in which evolu-

tionary phenomena are observed, recorded, and studied scien-

tifically: animal design, river basins, turbulent flow, animal

movement, athletics, technology evolution, and global design.

Evolution means design modifications, in time. How

these changes are happening represents mechanisms, and

mechanisms should not be confused with principle—the

Constructal law. In the evolution of biological design, the

mechanism is mutations, biological selection, and survival.

In geophysical design, the mechanism is soil erosion, rock

dynamics, water-vegetation interaction, and wind drag. In

sports evolution, the mechanism is training, recruitment,

mentoring, selection, and rewards. In technology evolution,

the mechanism is freedom to question, innovation, educa-

tion, trade, theft, and emigration.

What flows through a design that evolves is not nearly

as special in physics as how the flow system generates its

configuration in time. The “how” is the physics principle—

the Constructal law. The “what” are the mechanisms, and

they are as diverse as the flow systems themselves. The

“what” are many and the “how” is one.

“Animal design” was recognized in biology before the

arrival of the Constructal law. Its chief proponents were

Schmidt-Nielsen,157 Weibel,158 Vogel,159 and their co-

workers.160 What was missing was the physics principle that

governs animal design, and justifies the scientific approach

to it. Four years after stating the Constructal law, Bejan29

showed that the basic scaling laws of flying animals are

FIG. 5. A volume is bathed by a single stream

that flows as two trees matched canopy to can-

opy: (1) Elemental volumes stacked as a deck of

cards; (2) Trees with two branching levels; (3)

Trees with three branching levels.123,124

Reprinted with permission from J. Appl. Phys.

103, 123511 (2008); 107, 114901 (2010).

Copyright 2010 American Institute of Physics.

FIG. 6. The stepwise evolution of the vascular architecture as the volume size

(n) increases and d¼ y in Fig. 5.124 Reprinted with permission from J. Appl.

Phys. 107, 114901 (2010). Copyright 2010 American Institute of Physics.
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consequences of the constructal evolutionary design toward

moving animal mass more easily on the world map. The fly-

ing speed must be a certain multiple of the body mass raised

to the power 1/6, or the body length scale raised to the power

1/2. The frequency of body movement (wing flapping) must

be a certain multiple of the body mass raised to the power

�1/6, or the body length scale raised to the power �1/2.

The work spent on flying must be proportional to the

body weight times the distance traveled, just like the work

spent by any other vehicle. Noteworthy is that these con-

structal design rules cannot be described based on the meta-

bolic model proposed 1 year after the Constructal law by

West and coworkers.161,162

In September 2004, Weibel and Hoppeler convened in

Ascona, Switzerland, a workshop on animal design and the

theory that supports animal design. Bejan163 presented the

constructal theory of animal flying. As a follow up to this

workshop, Bejan and Marden164,165 extended the Constructal

theory of flying to animal running and swimming. They dis-

covered that the body mass scaling that governs flying also

governs running and swimming. For example, the frequency

of leg stride and fish tailing is the same multiple of the body

mass raised to the power �1/6 as the frequency of wing

flapping.

In order to swim forward, the swimmer must lift weight,

just like the runner and the flyer. Broadly speaking, all ani-

mals are weight lifters, the larger the stronger. This is why

on an average the animal force is twice the animal body

weight, for all flyers, runners, and swimmers. The useful

energy (work, or exergy) spent by all animals is equal to the

body weight times the distance traveled, times a factor that

depends on the medium. That factor is of order 1 for

swimmers, 1/10 for flyers, and in between for runners.

In sum, animal movement on the landscape is one

design, and it does not differ in the least from the movement

of all other mass movers such as the rivers, our vehicles, the

oceanic currents, and the winds.

Reductionism is not the answer to predicting animal

design and design in nature in general. Understanding the parts

is of course necessary, but it does not lead to predicting the

whole. The Constructal law runs against reductionism and

empowers science to predict the design and performance of

the whole. Only by knowing the architecture of how the parts

flow together is one able to see the whole. One must know the
principle of construction if one is to understand the whole, and

to predict the design of the whole at larger or smaller scales.

This theoretical view of animal design is attracting

interest.163–170 One interesting facet of this field is the simi-

larity with water waves: Their speeds obey the same propor-

tionality with the length scale raised to the power 1/2, like

all swimmers, runners, and flyers. From this observation

came the realization that animal movement, like all water

waves, is a “falling forward” motion. Another consequence

of this line of thought is that human running, like animal run-

ning, is a wheel turning and touching the ground on just two

spokes: the wheel invented by nature long before civilized

humans invented the wheel, and as a manifestation of the

Constructal law of evolutionary design toward easier move-

ment on the landscape.151

Another interesting facet of the constructal design of

animal locomotion is its real-life presence in the evolution of

sports. The winning athletes in speed running and swimming

are a carefully selected group of specimens, and their design

evolution is driven by a single objective: speed. This objec-

tive coincides with the quality that spells success for animal

species evolution, because speed empowers the predator to

catch the prey, and the prey to avoid the predator. Charles

and Bejan171 showed that during the 100 years of modern

athletics the speed records in the 100 m sprint and 100 m

freestyle have increased along with the body sizes of the

winning athletes. Size (mass, height) makes speed. The

speed-mass relationships for sprint and swimming turned out

to be statistically the same as for all running and swimming

animals.164,165 The same design evolution is responsible for

the more recent pattern that the fastest athletes in sprint tend

to be black (of West African origin) and the fastest in swim-

ming are white (of European origin).172 In groups of fastest

sprinters with the same height, the West African is taller

than the European because his or her center of mass is

roughly 3% higher. This translates into a 1.5% advantage in

speed on land, and a 1.5% speed disadvantage in speed in

water. The Europeans have the longer torsos, and this means

that they raise their bodies (shoulders) higher above the

water, they generate bigger waves, and bodies and waves fall

forward faster.

Running and swimming “tall” is the constructal-design

route to speed in athletics. This was made clear in a theoreti-

cal paper173 predicting the evolutionary design of swimmers

toward spreading the fingers and toes (Fig. 7). Swimming

with spread fingers is like wearing a glove of water boundary

layers (Fig. 8)—a glove of water “stuck” to the fingers. This

glove permits the swimmer to push the water downward with

a greater force, and to raise his or her body higher above the

water line. In the falling-forward motion that swimming is,

from height comes speed.

In conclusion, by predicting the evolution of speed

sports the Constructal law visualizes the evolutionary design

of animal swimming, running, and flying. It predicts why the

FIG. 7. Swimmers spread their fingers and toes in order to swim faster.
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larger animal should be faster, stronger, and with a lower fre-

quency of body motion. The same principle dictates that the

larger animal should live longer and travel a longer distance

during its lifetime.174 The life span t should scale as the

body mass M raised to the power 1/4, and the lifetime travel

L should scale as M5/12. This effect of size on life span and

life travel holds not only for animals but also for everything

else that moves on the landscape: our vehicles, the rivers,

and the atmospheric and oceanic currents, Fig. 9.

VII. GEOPHYSICS

The flow of human constructal-design patterns at the

global scale (cf. Secs. VIII–X) goes hand in glove with inani-

mate flow patterns of the same nature. The oneness of the ani-

mate and inanimate phenomena of design generation and

evolution was stressed from the beginning in the constructal-

law field.1,2,29 Because of the theoretical progress made with

the Constructal law during its first ten years, this unitary

design of the animate and the inanimate was reviewed by sev-

eral authors.22,24,175–181

The newest progress is evident in geophysics. The

Constructal law was used as the physics basis for the

movement of tectonic plates,182 beach configuration (slope

and sand size),183 the construction rules (sizes, numbers) of

all river basins,184,185 particle sedimentation,186 and the hy-

draulic conductivity of flow through unsaturated soil.187,188

Broader views of the emergence and persistence (life) of flow

designs at the global scale were developed by Miguel,189

Konings et al.,190 and Philips.191 The main features of global

climate were predicted based on the same principle for the

steady state192 and for climate change.193,194

VIII. FEW LARGE AND MANY SMALL

The few large and many small flow together, because

this is how movement is facilitated the most on an area.152

The movement of goods has evolved into a tapestry of few

large roads and many small streets (Fig. 10), and few large

trucks and many small vehicles (Fig. 11). The few large and

many small is also the design of all animal mass flow on the

landscape. In biology and common language this is better

known as the food chain, the fast catches the small, and the

large eats the small (which is correct, because the larger ani-

mals are faster, on land, in water, and in the air, cf. Sec. VI).

Few large and many small are all the streams that sweep

the globe. They are hierarchical, like a circulatory system

with one heart with two chambers, Europe and North

America.17 Fuel consumption, economic activity, and wealth

(Sec. IX) are other names for this natural design. This mental

viewing has implications in the design needed by the underde-

veloped to move more, to have better roads, education, infor-

mation, economies, peace, and security. How is this to be

done? By attaching all the areas and groups better (with better

flowing channels placed in better locations) to the trunks and

big branches of the flow of economy on the globe. For these

attachments to flow, the grand design needs the big rivers. It

needs the advanced. This is how to control the size of the gap

between the developed and the underdeveloped, so that the

whole design is efficient, stable, and beneficial to all its live

components.

IX. ECONOMICS AS PHYSICS

Things move and flow because they are driven. At the

scale of the earth, all the flows are driven by the heat engine

FIG. 8. When the spacing between fingers matches the thickness of the

boundary layers that coat the fingers, the fingers and their “water glove”

make a bigger palm that steps on water with a greater force, lifts the body

higher above the water line, and gives the swimmer a greater speed.

FIG. 9. The bigger live longer and travel

farther: animals, vehicles, rivers, and the

winds. The life span (t) and life travel (L)

of animate and inanimate bodies scale as

M1/4 and M5/12. The upper-right photo

shows the Okavango river delta (NASA

photo).
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that operates between heating from the sun and heat rejection

to the cold sky (Fig. 12). Work is produced by the global

heat engine, but there is no taker for this work. Instead, all

the work is dissipated (destroyed) into heat, in the “brakes”

shown in the figure. The net effect of the flow of heat from

hot to cold is movement, namely, atmospheric and oceanic

currents, and animal and human movement.

All the human needs are reducible to this thermodynamic

conclusion. The need to have heating, i.e., a room tempera-

ture above the ambient temperature, requires the flow of heat

from the fire to the ambient. The better we configure this heat

flow, the more the heat flow passes through our living space

before it is dumped into the ambient. The need to have air

conditioning and refrigerated spaces to store food is satisfied

in the same manner. It is all about facilitating our movement

on the landscape and increasing our staying power.

Completely analogous is the need to have fresh water flow-

ing through the living space.195 The building of infrastructure

for water delivery and removal requires work, which comes

from power plants that consume fuel. The need to have food

(another water stream into the living space) is met through agri-

culture and irrigation, which require work. In the arid and popu-

lated regions of the globe, the water supply comes largely from

desalination. This too requires work from fuel.

All together, the needs that define modern living are

streams driven by work, or power. In time, these streams

swell as the society becomes more advanced, civilized, and

affluent. Better living conditions (food, water, heating, cool-

ing) are achieved not only through the use of more fuel but

also through configuring better designs (i.e., science and tech-

nology) for all the things that flow and move. We see this

most clearly in the comparison of countries according to

wealth (GDP, Gross Domestic Product) and fuel consumption

(Fig. 13). Wealth is power,196–198 literally, the power used to

drive all the currents on the landscape, which together consti-

tute the economic activity. The need to have water is the need

to have power.

Movement and flow mean “work�weight� distance,”

as highlighted in Fig. 12. This summarizing formula holds

for the work needed to drive the water flow through all the

river channels, and the animals on all their paths on the

FIG. 10. The movement on the landscape appears complicated because it

leaves marks (paths) that crisscross and form grids. This is particularly evi-

dent in the evolving designs of urban traffic. Less evident is the actual flow of

people and goods on the area. Each flow is tree shaped, from the area to the

point of interest or from another point to the same area. The grid is the solid

(but not permanent) infrastructure that accommodates all the possible and

superimposed tree-shaped flows. The superposition of the big branches of the

trees forms the grid of avenues and highways. The superposition of the tree

canopies forms the grid of streets and alleys. The few large and many small

of urban design has its origin in the natural design of tree-shaped flow on the

landscape. Courtesy of Dr. Erdal Cetkin, Duke University.

FIG. 11. Few large and many small in the movement of freight on vehicles

on the landscape. The movement is enhanced when a certain balance is

established between the number of small vehicles allocated to a large vehi-

cle, and the balance (L1/L2) between the distances (L1, L2) traveled by the

few and the many. Few large and many small in how animal mass is moving

on the globe, on land, in water, and in the air. The design of animal mass

flow is the precursor to our own design as human and machine species

(humans and vehicles) sweeping the globe. Courtesy of Dr. Erdal Cetkin,

Duke University.

FIG. 12. Everything that moves on earth is driven. It moves because an

engine dissipates its work output into a brake. Courtesy of Dr. Erdal Cetkin,

Duke University.
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world map. It holds not only for the inanimate and animate

weight that sweeps the globe horizontally but also for the

weight of humanity—all the people, goods, and communica-

tions (assemblies of people and goods moving together,

globally). We see the actual flow of our human and machine

species in the air traffic system, which shows the design that

has emerged naturally to facilitate human movement on

earth. This global river basin—this vasculature—is driven by

the burning of fuel. Like the movement that it drives, the

burning of fuel is nonuniform and hierarchical—a few large

channels and many small channels, just like the architecture

of river basins, vascular tissues, and the animal kingdom.

Wealth means movement. Fuel that drives our flows is

wealth (Fig. 13), because it sustains the movement of people

and goods, in accord with the constructal-law tendency to

morph to move more easily. The physical relation between

fuel use, wealth, and sustained movement is also responsible

for the relation between wealth, life expectancy, happiness,

and freedom (Figs. 14–17). With the Constructal law, biol-

ogy and economics become like physics—law-based, exact,

and predictable.199

The burning of fuel and the resulting movement are not

the only streams that represent wealth. There is also the crea-

tion of knowledge (science, education, information), technol-

ogy, and paths of communication. Knowledge leads to better
design changes. These morphing flow architectures happen

because they are integral parts of the design of moving peo-

ple and goods more effectively. They guide the process of

changing and improving the design, to flow better. The flow

of knowledge is an integral part of the material flow architec-

ture on the globe, and it also means wealth—more, farther,

more efficiently, all measurable in physics.17

Cost, or money spent, is not “energy embodied” in a

product. Money is not energy. Power plants are not fueled by

banks. Goods transacted, i.e., given out by some (a) and

received by others (b), is a money-written record of a physi-

cal flow that proceeded from (a) to (b). Economics and busi-

ness are (or, better, should be) about the accounting of the

physical flows of humanity on the world map. Economics

and business are about flow geography—the live flow archi-

tecture of humanity.

The global flow system is a tapestry of nodes of produc-

tion embedded in areas populated by users and environment,

distributing and collecting flow systems, all linked, and

sweeping the earth with their movement. Constructal theory

and design9 are showing that the whole basin is flowing bet-

ter (with fewer obstacles globally) when the production

nodes and the channels are allocated in certain ways to the

covered areas (the environment). This is how the inhabited

globe becomes a live system—a living tissue—and why its

best future can be designed based on principle. With the con-

structal law, this design can be pursued predictively.

Once again, few large and many small is the secret of

the global design, because we showed recently that larger

flow systems must be more efficient than smaller sys-

tems.110,152 This is in accord with the recorded performance

of steam turbine power plants, gas turbine power plants,

FIG. 13. Economic activity means movement, which comes from the burn-

ing of fuel for human needs. This is demonstrated by the annual GDP of

countries all over the globe, which is proportional to the fuel burned in those

countries (data from International Energy Agency, Key World Energy

Statistics, 2006). In time, all the countries are racing up and to the right, on

the bisector.

FIG. 14. More economic activity also means longer life span (data from

CIA World Factbook).
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individual turbines, and refrigeration and liquefaction instal-

lations.200 The size effect is predictable from the argument

that larger body sizes accommodate ducts with larger cross-

sections and larger surfaces for heat and mass transfer, which

represent lower resistances for the flow of fluids and heat

and mass currents. This holds equally for power plants and

animal design, and is summarized in an efficiency formula of

the form gII ¼ C1Ma; where gII is the second law efficiency,

C1 is a constant, M is the body mass, and a is in the range 2/

3–3/4. This also predicts the efficiency of animal design as a

transportation system for animal mass on the landscape.

This effect of “economies of scale” can be predicted by

considering even simpler flow systems. We showed that when

heating water in a central facility the loss of heat from the

water mass m is proportional to the surface of the water tank

(i.e., m2/3), and consequently the heat loss per unit of heated

water mass decreases as m�1/3 as the body size m increases.9

Another example is the power output of solar chimney power

plants, which increases in proportion with A3/2, where A is

the land area occupied by the roof of the power plant.115,201

At first glance, this size effect suggests that bigger is

always better. We showed that this is incorrect because the

efficient system must serve a population of users distributed

on an area. When the system is large, the area is large and

the users are many. The distribution lines that connect the

central system with the users are plagued by losses that

FIG. 15. Wealth means movement: the rankings of cities according to air traffic and wealthiest inhabitants (data from Wealth-X and Bureau of Transportation

Statistics, T-100 market).

FIG. 16. Movement (wealth) is broadly understood as happiness (data from

CIA World Factbook and World Happiness Report, Columbia University,

2012).

FIG. 17. The free societies have wealth and staying power. In time, all the

countries are moving up (cf. Fig. 13), and this means that they are all evolv-

ing toward more freedom.

151301-11 A. Bejan and S. Lorente J. Appl. Phys. 113, 151301 (2013)



increase in proportion with the length scale of the area. From

this second point of view, smaller is better. There is a funda-

mental tradeoff between the two effects, and its chief result

is that a balance always emerges between the size of the cen-

tral system and the number of users that the system serves.

We demonstrated this for the generating and distribution of

power on a land area,201,202 refrigeration and air condition-

ing,203 heating,204 and education.205–207

The landscape emerges as a tapestry of nodes of produc-

tion and lines of distribution. The nodes are few and large,

and the branches that reach the users are many and small.

We also discovered that this tapestry must be woven accord-

ing to a vascular design that depends on the size of the whole

system. For example, while distributing heated water from a

central heater to a square area with N uniformly distributed

users, the flow architecture can be radial (r), dichotomous

(2), or a construct (4) based on a quadrupling rule, Fig. 18.

The lower part of the figure shows that the total heat loss per

user (i.e., the loss at the center and along the distribution

lines) decreases as the size of the landscape (N) increases. In

the pursuit of efficiency (less fuel required per user), the flow

architecture must change stepwise from (r) to (2), and finally

to (4) as the overall size increases. The stepwise evolutionary

design of vasculature covers all scales, including the water

and energy design of the inhabited globe, cf. Fig. 6.

X. GOVERNMENT

To improve government is and has always been of para-

mount importance. Just look at the situation in which our

country and the whole world is today. The evolutionary-

design path to better government is spelled out in a law of

physics: the Constructal law of design and evolution in na-

ture. This law is about a universal phenomenon: Everything

that flows and moves does so with evolutionary design,

which means changing flow configurations, patterns, and

rhythms that morph freely over time to provide greater

access to their streams, to flow more and more easily.

This natural tendency is the time arrow of design evolu-

tion. We see it everywhere, in animate and inanimate flow

systems, from the birth of river basins and the growth of

snowflakes, to lungs, vascular tissues, animal migration and

urban and air traffic.

The rule of law and the government are descriptions of

our own movement “with design” on earth. The traffic signs

in the city are just one example. They all “happen,” and their

evolution toward easier flowing over time happens. This is

the time arrow—the history—of our civilization.

Civilization also means engineering science, which is

the ability to design a better future, and to walk into it with

confidence. Therefore, instead of waiting a long time for bet-

ter government to happen, we can rely on the Constructal

law to fast-forward the evolution toward better government.

How? By opening up the channels through which we

and our belongings and our associates move on the entire

earth. This means to shorten, to straighten and to smooth all

the channels, to remove the obstacles, the bottlenecks and

the checkpoints, and to minimize the tediousness that frus-

trates every single one of us every day.

See all of us as who we are: We are a river basin of

movers who go with the flow, and yearn for easier and freer

movement. Easier movement means many things: greater ef-

ficiency, getting smarter, wealthier, and a better economic

sense in each of us.

In order for a flow design to change, the design must

have freedom to change, to morph, to evolve. River deltas

carved every day in the silt have freedom, and every day

they display the best flowing design, which is a tree better

than yesterday’s tree.

Freedom endows all the flowing designs with two

things: efficiency and staying power (Fig. 17). This is why

social systems that are free to change have two characteris-

tics—wealth and longevity. Rigid systems have the complete

opposites—poverty and catastrophic change. Without free-

dom, changes in flow configuration (design changes, evolu-

tion) cannot happen. The evolution of government toward a

more open government is the evolution toward freedom,

wealth, and longevity.

Technology, science, information, education—in one

word, culture—is how all of us unwittingly open up our chan-

nels and liberate our flows. As Professor Vadasz observed,208

“any society has as much freedom as the available technology

can provide and support.” This is why design science is so

important and valuable, and why the Constructal law teaches

how to fast-forward the design of open government. The

Constructal law has been applied to the design of currency

market dynamics,209 digital governance,210 and warfare.211

We all share the need to see how government works,

how it changes to work better, and how it could be designed

to change faster toward getting better. To describe all this,

we need an unambiguous understanding of the terms that we

FIG. 18. The effect of size on the design of distributed heating on the land-

scape. The total heat loss per user decreases as the size of the inhabited area

increases. The heat loss per user is lower when the architecture evolves step-

wise from radial to dendritic as N increases.204 Reprinted with permission

from J. Appl. Phys. 108, 124904 (2010). Copyright 2010 American Institute

of Physics.

151301-12 A. Bejan and S. Lorente J. Appl. Phys. 113, 151301 (2013)



use. We need a narrative that makes sense to the largest audi-

ence. The Constructal Law provides the physics basis for

defining the terms. It places in palpable terms many intan-

gibles such as government, freedom, business, wealth, data,

knowledge, information, and intelligence.

Government is a complex of rules and channels that

guide and facilitate the movement of humanity (people and

goods) on the world map. Many individuals are employed in

government in order to construct, maintain, and change the

rules and the channels. They are “employed” because they

are physically engaged in (i.e., they are part of) the entire

flow system of humanity. This engagement is what drives

the employees’ own movement on the landscape, and why

they too have a stake in improving the flow design, and why

they go with the flow. The flow system of humanity has the

built-in capability of generation, maintenance, and evolution

of flow architectures that make the whole flow better.

To see this in physical terms, think of evolution of urban

design and city traffic. Look through old telephone books and

compare the maps of your city over the past few decades.

These designs “happened” because of the urges of all the

inhabitants. They are not God given. They are not the wish of

one person. They are forever imperfect, inviting changes in

the strangled channels, and no changes in the channels that

flow with ease (as in the saying “if it ain’t broke, don’t fix

it”). Like the ant mound, the city design emerges and evolves

naturally in a particular direction over time because it

empowers every inhabitant. The city design is the physical

version of intangibles, such as “the wisdom of the crowd”

and the “wisdom of the ants.”

Flow generates better flow. A society that flows more is

wealthier, cf. Fig. 13. It has a greater tendency to reconfigure

itself to flow even more, and to become even wealthier over

time. There is no end to this evolving design. There is just

the time direction of the evolutionary changes, and the rate

at which changes are occurring.

Good is a government that facilitates the movement, the

reach and the staying power of the whole society, which

include mobility, participation, access, health, and life ex-

pectancy. A government becomes better when it opens the

channels, shortens and straightens the paths, removes road

blocks, and reduces waiting times.

Government is not the only complex of rules and chan-

nels that guide the flow of humanity. It is only the biggest, at

the largest scales on the world map (country, alliance, world).

Other complexes of morphing channels that facilitate our

movement are business (companies), education (schools, uni-

versities), and science. The use of science in practice is tech-

nology. Science and technology are one: All science is useful.

Government, business, and technology happen. They

appear out of nothing, and evolve to facilitate the flow of the

whole, which is we the living. They are flow architectures

that flow hand in glove so that the whole society flows better.

They are like the circulatory, respiratory, and nervous sys-

tems that keep the animal body-design flowing internally and

moving on the landscape.

There is no conflict between government, business, and

technology. On the contrary, these designs evolve as one in

order to facilitate the movement, the reach, and the longevity

of each of us. Their evolution is the large-scale manifestation

of every individual’s urge to be free, to make choices, to

vote, and to make changes to live better. The perceived con-

flict between government and business is due to the natural

give and take between two constantly adjusting flow designs

that bathe the same landscape in the same evolutionary

direction, and with the same purpose. A more open govern-

ment is good for better flowing business streams, and vice

versa. More efficient business flow structures engage and

sustain the constantly adjusting flow structures of govern-

ment and the rule of law.

Centralized vs decentralized (distributed) is one design,

not two. This unitary design is a vascular tissue with hier-

archical flows, few large channels flowing hand-in-glove

with many small channels.

Decentralized (distributed) does not mean uniform, or

one size fits all. Distributed means allocated, for example, a

channel (a stream) of this size allocated to an area (a popula-

tion) of this size. The allocation of channels to areas over

many scales is the hierarchical vasculature that bathes the

area most efficiently, and empowers all the inhabitants the

most.

Global vs local is one design, not two. The sizes and

numbers of channels, and their placement on areas with cer-

tain sizes and numbers are the hierarchical flow design gov-

erned by the Constructal law. Theory alone enables us to see

this design from the micro to the macro. Constructal law

empowers us with scaling—the ability to scale up the

designs that we understand and improve at smaller scales. To

scale up the design, one must possess the principle on which

the design is based. The large aircraft is not a magnified ver-

sion of the small aircraft. The large animal is neither a mag-

nification nor a repeated compounding (assembly) of the

small animal.

Data are not knowledge. Data must not be confused with

intelligence either, and “open data” must not be confused

with “open government.” Data is the plural of datum (given),

i.e., something that is “in hand,” known or held, i.e., a fact

on which anybody can rely. The data are the facts that we

accumulate based on observations, measurements, and sur-

veillance. Making data available without the principles to

decode, understand, and analyze them is pointless. This

approach could reach the opposite of the effect that is sought.

One could even imagine the perverted attitude of a govern-

ment that would drown it citizens in an ocean of data, to the

point that the most important items are hidden under superfi-

cial data. Such a government could not be accused of lack of

openness, and it would be hard to question.

Today, data are flooding our mental field of vision with

streams so large that they are impossible to store. For this,

technology evolves toward computer memories that have

greater densities and greater volumes at the same time. This

trend is not new. The technology of gathering data has

always been evolving toward greater streams of data, from

the telescope and the microscope to spy satellites and sur-

veillance cameras on streets and in buildings. Science has

been generating open data throughout the history of civiliza-

tion. Science has also been facilitating the “opening” of data,

through better alphabet, better numerals, better books, tables,
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plots, matrices, journals, libraries, and all the physical struc-

ture that supports information storage today.

Knowledge (scientia, in Latin) is science, and science is

both, the observing and the mental condensing and stream-

lining the flow of observations. The condensed are the princi-

ples, and, among them, the most unifying are the first

principles, the laws.

Intelligence is the ability to effect design change. It is to

use knowledge to make changes in how we move on the

landscape, and how we rearrange the landscape. Intelligence

is to “see” a better design before the better design is spoken,

tested, and built. Intelligence is the fast forwarding of design

generation and evolution.

XI. THE S CURVE PHENOMENA: SPREADING
AND COLLECTING

The flows that bathe and connect the live landscape are

united not only by the tapestry of tree-shaped flows (Figs. 10

and 11) but also by the unsteady (nonmonotonic) manner in

which these flow architectures spread. When the covered terri-

tory is plotted versus time, its history is an S-shaped curve.212

In the beginning the covered territory grows slowly, but the

rate of territory coverage increases in time. The growth rate is

maximum at the point where the S-curve is the steepest.

Later, the growth rate decreases monotonically and the cov-

ered territory tends to a plateau, which is the upper end of the

S (see the examples of Fig. 19).

To see how to predict the S-curve phenomenon, consider

the operation of a heat pump coupled to the ground for the

extraction or rejection of heat.212–215 First, the heat must be

spread by fluid flow, through tree-shaped pipes, throughout

the territory. During this initial “invasion” phase, the volume

of the heated soil is small (Fig. 20, upper left), but it increases

at a growing rate. Second, after the hot fluid has invaded all

the channels on the territory, the heat is transmitted from the

channels perpendicularly to the neighboring soil. This is the

“consolidation” phase, where the theme “solid” in the word

consolidation suggests the reality of the heat current filling

the soil interstices held between neighboring channels.

The history of the volume of heated soil versus time is

an S-shaped curve (Fig. 20) that is entirely deterministic, i.e.,

predictable. Everything about this S curve is known because

both phases, the invasion and the consolidation, are known.

During invasion the covered area increases as t3/2, not as an

exponential. This initial phase is not “explosive.” During

consolidation, the covered area increases as t1/2. When the

invading channels are tree-shaped (Fig. 21), as opposed to

single channels (Fig. 20), then in accord with the Constructal

law the entire flow from the point to the volume occurs

faster, more easily, along a steeper S curve.215

In summary, and in accord with the Constructal law, the

S curves of nature are manifestations (history records) of tree-

shaped invasion (not line invasion) on areas and volumes that

are eventually filled during consolidation by transversal diffu-

sion. This discovery of the S curve is important for two rea-

sons. First, the S curve was predicted from the constructal law

before there was any reason to look outside to see many

diverse S curves and try to predict them in order to unite

them. This first part of the story is about the meaning of pure

theory. It is images in the mind, in that imaginary movie

theater.

The second part is about the practical value of this power

to predict. When anything spreads on a territory, the curve of

territory size vs. time is S-shaped: Slow initial growth is fol-

lowed by much faster growth, and finally by slow growth

again. The corresponding curve of the rate of spreading vs.

time is bell shaped. This phenomenon is so common that it

has generated entire fields of research that seem unrelated: the

spreading of biological populations, cancer tumors, chemical

reactions, contaminants, languages, news, information,

FIG. 19. Examples of S-curve phenomena: the growth of brewer’s yeast, the

spreading of radios and TVs, and the growth of the readership of scientific

publications.212 Reprinted with permission from J. Appl. Phys. 110, 024901

(2011). Copyright 2011 American Institute of Physics.

FIG. 20. Line-shaped invasion, followed by consolidation by transversal dif-

fusion. The predicted history of the area covered by diffusion reveals the S-

shape curve.212 Reprinted with permission from J. Appl. Phys. 110, 024901

(2011). Copyright 2011 American Institute of Physics.
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innovations, technologies, infrastructure, and economic activ-

ity (e.g., Figs. 19 and 22).

The spreading of ideas exhibits the same S-curve phe-

nomenon. This is illustrated by the history of citations regis-

tered by every scientific publication, and by the total number

of citations of a single author during his or her career.216 We

showed that as a consequence of this history the h index of

every author also traces an S-shaped curve during the

author’s life of creative work.

Collecting flows such as oil extraction and mining cover

their available areas and volumes while exhibiting S-curve

histories. In the field of oil extraction, the steepest portion of

the S curve is known as the Hubbert peak. In accord with the

progress from Figs. 20 to 21, oil extraction and mining are

evolving toward dendritic wells and mine galleries, because

trees offer the steeper S curves than straight shafts.215

The natural tendency that drives all the S-shaped histor-

ies of invasion and retreat on the landscape also governs the

movement of people and animals.217–220 For example, Lui

et al.218 showed that the evacuation of pedestrians from pub-

lic places can be made to occur faster by properly sizing and

shaping the floor areas and bifurcations of walkways.

XII. CONCLUSIONS

The fast growth of the Constructal-law field, which is

documented in this review article, is an illustration of the

much broader phenomenon of how and why science evolves

and improves. Science is an evolutionary design in which

what we know—what is true, what works—becomes sim-

pler, more accessible, and easier to teach.207

The Constructal law is a new law of physics that broad-

ens significantly the reach of thermodynamics.221 The

merger of mechanics with caloric theory into thermodynam-

ics in 1851 was not the end of this morphing by simplifica-

tion and replacement. The caloric line continued to this day

as thermometry, calorimetry, and heat transfer (Fig. 23).

Although mechanics and caloric theory were incorporated in

FIG. 21. Tree-shaped invasion, showing the narrow regions covered by dif-

fusion in the immediate vicinity of the invasion lines.212 Reprinted with per-

mission from J. Appl. Phys. 110, 024901 (2011). Copyright 2011 American

Institute of Physics.

FIG. 23. The evolution and spreading of

thermodynamics during the past two cen-

turies (after Ref. 19, Diagram 1, p. viii).

FIG. 22. The S-shaped history of power generation in the U.S. during the

20th century (data from EIA/AER, Annual Energy Review 2003, Energy

Information Administration, U.S. Department of Energy, Report No. DOE/

EIA-0384(2003), 2004).
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thermodynamics, heat transfer developed into a self-standing

discipline, with major impact on applied mathematics, fluid

mechanics, and aerodynamics. Still, its proper place is in

thermodynamics along with all the other caloric teachings.

The merger of heat transfer with thermodynamics was

predicted in 1982 in the preface to Ref. 19 (Fig. 23), and the

prediction came true in the two decades that followed. Heat

transfer journals became journals of “thermal sciences”

(which means heat transfer þ thermodynamics), and in many

universities the heat transfer and thermodynamics courses

were combined into a single course on thermal sciences.

Thermal sciences expanded in new directions, most vig-

orously now because of the Constructal law, which unifies

science (physics, biology, engineering, social sciences).

Constructal thermodynamics221 places the concepts of life,

design, and evolution in physics. It constitutes a wide open

door to new advances especially in areas where design evo-

lution is key to performance, for example, in logistics,222 bi-

ological evolution,223 art,224 and business and economics.225

Constructal thermodynamics claims a role for design,

configuration, and geometry in understanding the language

of nature.226 The Constructal law runs against reductionism,

and empowers the mind to see the whole, its design, per-

formance, and future. In modern times, physics grew on a

course tailored to infinitesimal effects. The Constructal law

is a jolt the other way, a means to rationalize macroscopic

design, objective, and behavior.29
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