From 2D Fractal Geometry to 3D Fractal Trigeometry

by Jules Ruis
update 15 April 2023
It is a bit unclear what the generalization from a 2D Mandelbrot set (Fractal Geometry) to a 3D version (Fractal Trigeometry) should look like. So first, let's take a closer look at the two-dimensional case.

Fractal Geometry

Complex numbers are written as $\mathrm{a}+\mathrm{bi}$, where a and b are real numbers and i is the imaginary unit, with the property that $\boldsymbol{i}^{2=-1}$. This is enough to define elementary operations. What is important to us is the multiplication that looks like this:

$$
(a+b i)(c+d i)=a c+b c i+a d i+b d i^{2}=(a c-b d)+(b c+a d) i
$$

Complex numbers can be represented as points in the so-called complex plane. The horizontal axis in this plane is called the real axis and the vertical axis is called the imaginary axis. For a complex number a $+b i, a$ is called the real part and b is called the imaginary part. By taking the real part as a horizontal component and the imaginary part as a vertical component the complex number is fixed as a point in the complex plane. This is Cartesian notation.

If we have a complex number $a+b i$, the position in the complex plane can also be determined in another way, namely by means of polar notation:

$$
a+b i=r(\cos \varphi+i \sin \varphi),
$$

where r is the distance to the origin and φ the angle between the real axis and the line segment connecting the origin to the point in question (measured counterclockwise). The relationships between a, b, r and φ are given by:

$$
\begin{aligned}
& r=\sqrt{a^{2}+b^{2}}, \\
& a=r \cos \varphi, \\
& b=r \sin \varphi .
\end{aligned}
$$

In polar notation, multiplication is performed as follows:

$$
r_{1}\left(\cos \varphi_{1}+i \sin \varphi_{1}\right) r_{2}\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)=r_{1} r_{2}\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right)
$$

This follows simply from Euler's formula ($\boldsymbol{z}_{=} \boldsymbol{r} \cdot \boldsymbol{e}^{\boldsymbol{i} \varphi}$).
Now it is also clear what we need to do to square and generally take powers from a complex number. If $z=r(\cos \varphi+i \sin \varphi)$, then $z^{n}=r^{n}(\cos n \varphi+i \sin n \varphi)$. So to find the $n^{t h}$ power, the $n^{t h}$ power of the distance to the origin is taken as a new distance and the angle with the real axis is multiplied by \boldsymbol{n}.

Fractal Trigeometry

Now let's look at the three-dimensional case. A point in three-dimensional space can be determined by choosing an x-, y - and z-coordinate, which is the Cartesian representation. Another possibility is to use spherical coordinates. In this case, a point (vector) is specified by the distance r to the origin (with $r 1$ the projection of the vector on the xy-plane and r 2 the projection of the vector on the z-axis), an angle $\boldsymbol{\theta}$ as the angle in the z-r1 plane running from the vector to r1, and an angle $\boldsymbol{\varphi}$ as the angle in the xy-plane running from the x-axis to $r 1$. The relationship between Cartesian coordinates and spherical coordinates is given by:

$r=\sqrt{x^{2}+y^{2}+z^{2}}$	$r 1=\sqrt{x^{2}+y^{2}}$
$x=r(\cos \varphi \cos \theta)$	
$y=r(\sin \varphi \cos \theta)$,	
$z=r(\sin \theta)$	

Spherical coordinates used in Fractal Trigeometry

It is unclear how complex numbers in three dimensions should be defined, but with the geometric properties of complex numbers in two dimensions in mind, there is an obvious way to define a "multiplication". This then goes like this: to elevate to the $\boldsymbol{n}^{\text {th }}$ power, take the $\boldsymbol{n}^{\text {th }}$ power from the distance to the origin and multiply the angles $\boldsymbol{\varphi}$ and $\boldsymbol{\theta}$ by \boldsymbol{n}. This is only a generalization of the geometric way of multiplying complex numbers, and actually in three dimensions there is no longer a multiplication.

In this way we can try to construct a kind of 3D Mandelbrot set; we call this the Juliusbulb set. It is very difficult to predict what the final Juliusbulb set will look like based on this construction alone. What is clear is that the z-axis plays a special role in this case. The x - and y-axis are actually similar to the axes in the complex plane and the angle φ plays the same role in the 3D case as in the 2D case. In 2D φ describes the rotation around the origin and in 3D φ describes the rotation around the z-axis. This could explain why the set in the z-direction is essentially different from the x - and y-direction.

Fractal Imaginator (FI) software

First created as BBM-15 d.d. 29 December 1997, see: www.fractal.org/BBM15.pdf

We want to calculate 3D fractals called the Juliusbulb (former Mandelbulb) and Juliabulb. Similar to the original 2D Mandelbrot the 3D formula is defined by $z->z^{\wedge} n+c$ but where ' z ' and ' c ' are hypercomplex ('triplex') numbers representing Cartesian $x-, y$-, and z-coordinates.

The exponentiation term can be defined by:
$\{x, y, z\}^{\wedge} n=\left(r^{\wedge} n\right)\left\{\cos \left(n^{*} \phi\right)^{*} \cos \left(n^{*} \theta\right), \sin \left(n^{*} \phi\right)^{*} \cos \left(n^{*} \theta\right), \sin \left(n^{*} \theta\right)\right\}$
where $r=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2\right)$ and $r 1=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right)$
As we define θ as the angle in z-r1-space and ϕ as the angle in x - y-space
then $\theta=\operatorname{atan} 2(z / r 1)$ so $\theta=\operatorname{atan} 2\left(z / \operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right)\right)$ and $\phi=\operatorname{atan} 2(y / x)$

The addition term in $\mathrm{z}->\mathrm{z}^{\wedge} \mathrm{n}+\mathrm{c}$ is similar to standard complex addition, and is simply defined by:
$(x, y, z\}+\{a, b, c)=\{x+a, y+b, z+c\}$

The rest of the algorithm is similar to the 2D Mandelbrot!

Summary Formula for 3D Juliusbulb and Juliabulb
$r=\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2\right)$
$\theta=\operatorname{atan} 2\left(z / \operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right)\right.$
$\phi=\operatorname{atan} 2(y / x)$
$n e w x=\left(r^{\wedge} n\right) * \cos \left(n^{*} \phi\right) * \cos \left(n^{*} \theta\right)$
newy $=\left(\mathrm{r}^{\wedge} \mathrm{n}\right) * \sin \left(\mathrm{n}^{*} \phi\right) * \cos \left(\mathrm{n}^{*} \theta\right)$
$n e w z=\left(r^{\wedge} n\right) * \sin \left(n^{*} \theta\right)$
where n is the order of the 3D Juliusbulb (former Mandelbulb) and Juliabulb with formula $\mathrm{z}->\mathrm{z}^{\wedge} \mathrm{n}+\mathrm{c} \mathrm{\#}$.

Examples of 3D Juliabulb, 3D Juliusbulb (Mandelbulb) and 3D Julius Ruis Set

Fore more information see www.fractal.org

Page 4 of 4

