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Dynamics of complex systems is one of the program
themes in the NWO (Netherlands Organisation for Scientific
Research) strategy for the years 2007-2011. The ambition

of the current proposal is to initiate integrated activities

in the field of complex systems within the Netherlands, to
provide opportunities for the Dutch scientific community to
start up a research program on ‘Complexity’, and to join in,
and give direction to, European activities in this field.

LF Ew . 3_?
T4 ¥
E sl
“1?,:__1__"_‘
Pl e
J e T S
s WED 2 B F
§ R R rae S AL T
B FHH FHE 20
= SS243F 1313

) Erkied
LI

¥ Em

At many levels of activity, Dutch researchers take prominent
positions and are internationally recognized for their
research in complexity science — a field that by its very
nature requires a multi-disciplinary collaboration. However,
this has not yet led to an established national community
that crosses existing disciplinary boundaries.

In this proposal, we call for an effort to bring together
ideas, insights, and knowledge from various disciplines

and to initiate inspiration and cross-fertilization among
traditionally separated fields.

We sketch the contours of a scientific ‘Complexity’
program by focusing on three trans-disciplinary research
themes. The choice for these themes is determined by the
opportunities offered and challenges posed by the field of
‘Complexity’, in combination with the existing strengths
and highlights of the Dutch scientific community.






Introduction

e

What is ‘Complexity’? What is a complex system?

In science, the notion of ‘Complexity’ is associated with

a vast number of phenomena observed in nature, in
society, in laboratory experiments, and in mathematical
models. Increasingly, scientists dealing with complex
systems in different fields of enquiry realise that a proper
understanding of such systems requires an approach that

transcends the boundaries between the classical disciplines.

Therefore, defining and developing the cross-disciplinary
field of complexity research is a timely challenge.

There are a number of characteristic features that are
shared by almost all complex systems. A complex system
can often be seen as a large collection of small elements
that interact with each other at a micro-level. Such elements
may be atoms in physics, molecules or cells in biology, or
consumers in socio-economics. However, ‘more is different’
(Anderson, 1972) in complex systems. Phenomena observed
at a global, macro-level, typically cannot be reduced to

the properties of the constituent elements: these are
emergent properties that arise through ‘se/f-organizing’
local interactions. This is in sharp contrast to the classical
reductionistic idea that nature can only be understood by
reducing or decomposing its processes into elementary
building blocks that can be studied independently.

The concept of ‘Complexity’ has been introduced as

the associated paradigm shift in the study of natural
phenomena. »
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Complex systems are, without exception nonlinear and have

a strong multiple-scales or even scale-free character, in time

as well as in space. The formation, the structure and the
dynamics of clouds is a prototypical example of a - largely

not understood — complex process. The spatial scales involved
range from micrometers to thousands of kilometres (Figure 1).
In fact, cloud formation is in itself only one of the components
of the complex system formed by our climate, a slow time
process at the global scale that is driven by the ‘fast’ dynamics
of day-to-day weather.

Another feature shared by many complex systems, is the fact
that they can be modelled as networks or graphs. The notion
of a network, or its more abstract representation as a graph,
allows for dealing with the often inhomogeneous patterns
of interactions within complex systems. The brain, with its
billions of interconnected neurons in which bio-chemical
processes at the micro-level give rise to consciousness and
emotions at the macro-level, is perhaps the most challenging
complex network of all. More often than not, these networks
evolve — new connections may form, others may break:
complex systems develop and adapt dynamically. Contrary

to the fundamental processes that form the foundation of
the reductionistic approach, such as Newton’s laws, complex
systems often have a memory. Complex cause and effect
relations characterize many psychological disorders, the
emotional responses of an individual (and thus her/his brain)
are for a large part driven by past events. As stated by llya
Prigogine, ‘complex systems carry their history on their back’,
in the sense that not only the dynamics but even the nature
of a complex system is determined by its past evolution.

The added value
of complexity research

Complexity research is an intrinsically transdisciplinary
enterprise. The phenomena studied in complexity science
originate from disciplines ranging from statistical physics to
economics, from mathematics to sociology, from chemistry
to neuroscience, from computer science to genomics, etc.
Moreover, many challenges faced by our present-day society,
such as the global spread of infectious diseases, climate
change and traffic control translate to scientific questions
that are at the core of complexity research.

Once again, ‘more is different’: complexity research extends
beyond the straightforward combination of two or more
disciplines, it introduces new dimensions, challenges and
opportunities. Its core consists of studying the underlying
concepts, or mechanisms, that can be distilled from the
complex phenomena exhibited by nature, society or a
computer simulation, and that are characteristic for complex
systems in general. For instance, emergent behaviour at the
macro-level, such as the outbreak of panic in a crowd, the
catastrophe in which a vegetated area collapses into a desert,
or the sudden ‘electric storm’ of an epileptic seizure, shares
essential characteristics with well-studied concepts such as
phase transitions in physics and bifurcations in mathematics.
Likewise, questions about the prediction and possible control
of congestions in traffic flow or about the growth and
dynamics of sandbanks in coastal areas, correspond directly
to theories on pattern formation that have been developed
in mathematics and physics. There is a world to be gained in
science by crossing boundaries.



Figure 1 Clouds, Climate and Complexity. Clouds exhibit
complex behaviour on scales that vary from global patterns,
to the size of thunderstorm cells, to micro-physics. While
large-scale conditions impact small-scale organization, there
also is a direct link from micro scale reflectivity properties to
earth albedo. (courtesy Harm Jonker, TU Delft)

However, it is obvious to all scientists working in fields
related to complexity research that existing fundamental
insights so far do not go beyond scratching the surface of
most complex phenomena. In other words, novel ideas that
penetrate the subtle interplay between many interconnected
elements on various, often entangled, scales, need to be
developed. These novel insights can be reached only by a
direct cross-fertilization between different disciplines. A
question formulated by an observation in cancer research
may open up a new area of mathematical research;

a thermodynamical concept may inspire and guide a
breakthrough psychological experiment. In fact, complexity
theory and its predecessors have already established that this
is (much) more than wishful thinking. Scientific computing,
i.e. the combination of modelling and computer simulations,
is revolutionizing various areas in science and society; the
impact of the work by the meteorologist Edward Lorenz on
the (mathematical) field of dynamical systems can hardly be
overestimated.

By their nature and origin, insights obtained in the dynamics,
prediction or control of complex systems have a potentially
decisive impact on human society, as for instance has been
demonstrated by the worldwide effects of the ideas by Black,
Merton, and Scholes — that are based on concepts stemming
from mathematics and physics — on financial markets.

Complexity research has another, extremely valuable aspect:
it may bridge the gap between the three main scientific
communities in the Netherlands, known as ‘alpha’, ‘beta’, and
‘gamma’ sciences. The ‘alpha’ sciences concentrate on studies

such as literature, history, and philosophy, whereas the
‘beta’ sciences cover studies like mathematics, physics, and
chemistry. More or less in between these two communities,
the ‘gamma’ sciences concerns studies of man and society,
for example, sociology, psychology, law, and economics.
Complexity research has its roots in each of these three
communities. Especially in the study of complex systems, the
‘alpha’, ‘beta’, and ‘gamma’ sciences use to a high extent
the same language, tools, and methodology, as illustrated by
the numerous examples mentioned in this document. There
is much to gain by bringing these different focal points into
a single framework for joint research, with already the clear
advantage of having a common ground and understanding
of complexity.

Complexity research
in the Netherlands

At the international scale, ‘Complexity Science’ has been
evolving as an independent and highly relevant multi-
disciplinary scientific field for more than a decade now. For
instance in the U.S.A., the National Science Foundation (NSF)
has initiated many activities in this area. Examples within
Europe include the EU-funded new and emerging science and
technology (NEST) specific targeted research projects (STREPs)
‘Complexity Pathfinder’ in which multi-disciplinary complexity
research has been implemented in various disciplines, such

as physics, chemistry, biology, psychology, sociology, political
science and economics. Another recent European initiative is
the FP6 NEST project on ‘Tackling Complexity in Science’. »
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A large number of researchers in the Netherlands, working

in various fields, have been actively involved in complexity
research at an individual or at a local level. For instance,
several Dutch universities and institutes participate in the
European ‘Tackling Complexity in Science’ projects ‘Starflight’
(Starlings in flight), ‘Complex Markets’, “‘CREEN’ (Critical Events
in Evolving Networks) and ‘EMB/O’ (Emergent Organisation
of Complex Biomolecular Systems).

In contrast to developments abroad, these activities have not
yet led to an established national community that crosses

the existing disciplinary boundaries. A national program on
‘Complexity’ will have a significant impact on the foundation,
success and vigour of such a community, and thus on the
evolution and embedding of ‘Complexity Science’ within the
Netherlands. Such a program will bring together researchers
from traditionally separated disciplines, and will create
opportunities for joint research projects that are completely
novel within the Dutch scientific landscape.

Moreover, the formation of a program on ‘Complexity” is
especially timely, as can be concluded from the following
initiatives, activities and recent developments:

- The NWO-GBE/GBN program ‘Dynamics of Patterns’ has
been running since 2005. It has a multi-disciplinary scope
and emphasis that is similar to that of the intended
‘Complexity’ program. In fact, a “Complexity’ program
may be seen as the natural next step that extends the
scope of the ‘Dynamics of Patterns’ program into the
realm of economics, biology, psychology, sociology and

the earth sciences. There is a mutual understanding
within the (active) ‘Dynamics of Patterns’-community
that it is now an appropriate moment to reach out to
adjoining disciplines.

Last year, a new centre for research on complex
systems, Para Limes, has been established (in Doesburg)
as a private initiative by leading figures from science
and industry. This centre may be seen as a European
counterpart of the world-renowned ‘Santa Fe Institute
for Complex Systems’. Para Limes is expected to attract
international complexity researchers of the highest level.
Their presence will stimulate complexity research in the
Netherlands. On the other hand, a well-coordinated
national ‘Complexity’ program will increase the impact
and attractiveness of this centre.

In 2006 the ERANET on complexity, called the
Complexity-NET, was initiated by 11 European Research
Councils and Ministries, including NWO. This ERANET
resulted from an initiative of CREST, the EU Scientific
and Technical Research Committee, which identified
complexity as one of the top five priority areas. Through
an analysis of national research funding activities and
funding procedures, it has been possible to define and
specify a Coordinated Action on complexity, which sets
the scene for a strategic funding of complexity research
and research training on the European level. A joint
action plan includes the opening of national programs
and the possibility of joint research or research training
programs.



— Within the Dutch scientific community, there is a number

of activities that indicate that now indeed is the moment
to build robust and permanent bridges between the
alpha, beta and gamma sciences. The foundation in
2005 of mathematics (‘wiskunde’)-cluster ‘Nonlinear
Dynamics of Natural Systems’, that has a research focus
on the (interactions of mathematics with) the life and
earth sciences, is one example. Another one is the recent
initiative by the Netherlands institute for Advanced Study
in the Humanities and Social Sciences (NIAS) and the
Lorentz Center, that has its roots in the beta sciences,

to jointly organize interdisciplinary apy-workshops

— a cooperation that is also quite unique from an
international point of view.

At present, there is a number of promising initiatives

at the national and more local scales (e.g. Science Park
Amsterdam) in the field of ‘Computational Science’ and/
or ‘e-Science’. Although there certainly is a difference
between their scientific approaches, methods and central
questions, the fields of ‘Complexity’ and ‘Computational
e-Science’ are compatible and share common interests.
In fact, “Complexity’ research profits from the ‘e-Science’
initiatives, and vice versa. Moreover, the associated
communities are well-mixed, and strongly support each
others initiatives.

In the social, behavioural and life sciences, the

number of complexity research institutes is rapidly
increasing. ‘CeNDEF’ (Center for Nonlinear Dynamics in
Economics and Finance) at the Faculty of Economics and

Econometrics of the University of Amsterdam studies the

economy and financial markets as nonlinear, complex,
evolving systems. ‘DRIFT’ (Dutch Research Institute For
Transitions) at the Faculty of Social Sciences of the
Erasmus University Rotterdam employs theories and
concepts from a wide range of scientific disciplines,

such as complex systems science, governance, sociology,

culture sciences and policy analysis, to study major
transitions in society and technology. ‘CSCA’ (Cognitive

Science Center Amsterdam) is related to the Faculties of
Science, Social and Behavioral Sciences, and Humanities
of the University of Amsterdam, this consortium studies
human cognition and for instance applies nonlinear
mathematical models to study complex behaviour of

the neural system of the brain. ‘RIKS’ (Research Institute
for Knowledge Systems), located in Maastricht and
connected to the Faculty of General Science at Maastricht
University, applies complex cellular automata models to

predict future land-use patterns.

The Dutch scientific community is especially well-equipped,

also from an international perspective, to initiate activities in
the field of complexity, and has the opportunity to create a

starting point from which it may join in, and give direction
to, European initiatives. In order to do so, the community
would strongly benefit from a common research platform
that allows for maximal cross-disciplinary interactions. We
feel that a national program on complexity science could
provide such a platform, as well as provide opportunities
for young researchers to be trained within this rapidly
developing field. B
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In the second part of this proposal, we sketch the contours
of a ‘Complexity’ program by focusing on three research
themes. Each of these has been chosen to highlight a broad
area within the field of ‘Complexity’. Based on its existing
strengths and potential, the Dutch scientific community
may be expected to provide major contributions to the
opportunities offered and challenges posed by each of
these themes. The themes are by no means independent,
in fact they are often strongly overlapping and integrated.
However, they represent complementary approaches to the
understanding and the study of complex systems.

The theme Micro-Macro focuses on the relationship 13
between the micro-components and the macro-behaviour of
complex systems. The Networks theme highlights the role

of the topology and strengths of the connections between

the components of a complex system. The Predictability

theme, finally, deals with the behaviour of complex systems

and the extent to which this behaviour can be predicted

or controlled on the basis of (partial) knowledge of its

workings.






Figure 2 Snapshots from an Ising model simulation. Left: a
disordered high temperature state. Right: an ordered low
temperature state.

Examples

Complex systems often have multiple scales in spatial
structure (e.g., quarks-atoms-molecules-material-planet-
galaxies) and in time (from nano-seconds to galactic time,
from tic-by-tic trading to lifetime investment). These distinct
scales reflect a hierarchical organization of nature. Both
individual and collective emergent properties play a role as
one moves from one scale to the next. We discuss a number
of examples of interaction at the micro-level and emergent
properties at the macro-level.

Molecule to Material The best known example of an
emergent property is the phase transition in physics, which
underlies the transition from gas into liquid or from liquid
into a solid state. For example, when water freezes to ice
when the temperature falls below a critical level, small
changes in local interactions of water molecules suddenly
lead to a large change, a phase transition, at the macro-
level. Nowadays physics has a fairly solid understanding of
emergent behaviour in equilibrium systems through the
statistical mechanical theory of phase transitions. However,
the field of se/f-organization phenomena in driven, non-
equilibrium systems is still in its infancy. This holds a fortiori
for systems, in which the micro-components are dynamical
systems in their own right, like polymers, which consist of
many individual segments coupled to form a larger unit.
Modern cell biology has provided physics with novel
examples of molecular systems, which display emergent
properties. One example is that of the cytoskeleton in which
energy-consuming interacting entities like micro-tubules and
motor-proteins show striking self-organizing behaviour. The
appropriate analytic tools to describe such systems, which
are characterized by disparate length scales (nm for motor
proteins, microns for micro-tubules), time scales (ms for
motors, minutes for micro-tubules), and novel effects like

the random switching between growth and shrinking of

the micro-tubules, have yet to be developed. Such systems
are also characterized by the large number of physical
parameters that exert various degrees of control. Many

of these elude simple experiment-driven measurement or
assessment. This poses the additional challenge of identifying
the relevant parameters, by searching through high-
dimensional spaces, a tough problem in its own right.

Gene to organism In evolutionary biology, a great
challenge is to understand the scaling-up, over many orders
of magnitude (both in time and space), of genomic change
to changes in the organism as a whole, and how this is
ultimately shaped by ongoing evolutionary processes. The
current genomic data explosion (and the insights obtained
from the data through bio-informatics studies) gives us raw
material to work from. We need to develop methodologies
to study the interlocking of processes at multiple space

and time scales. We need to learn to recognize which part
of (relative) macro-level behaviour is due to general self-
organizing processes and which parts reflect rare, but
evolvable, cases in a high-dimensional specification space.
We need to further our understanding of how Darwinian
mutation selection processes interface with self-organizing
processes at multiple levels. Not only do we need to
understand the macro-level behaviour in terms of given
micro-level behaviour, but we also need to understand

how the (relative) micro-level behaviour emerged as a
consequence of the macro-level behaviour that it generates
(as is the case in multi-level evolutionary processes). A case in
point is the question of how new species emerge in specific
contexts, depending on the competition (or collaboration)
with other species and environmental conditions. »
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Figure 3 The multi-level path from gene to organism
(from: http://genomics.energy.gov )

Neuron to mind Love, humour, solving a puzzle,
remembering the name of one’s first teacher, the idea

for a novel, etc,, this is all in the brain. All psychological
processes find their origin in the interactions between
billions of neurons: the brain appears to be the ultimate
complex system. This version of the micro-macro problem,

or specifically brain-mind problem, has generated an
enormous body of research, and is the subject of one of the
most central and long-lasting debates in psychology and
philosophy. It now appears that the complex system account
is an important and viable alternative for the traditional
reductionist and dualist accounts for this mind-body problem.
For instance, using the approach of synergetics, Kelso and
others have been able to demonstrate empirically, and to
model mathematically, stimulus-induced phase transitions

in the brain, relating macroscopic levels of synchronization

to micro levels of interacting neural modules. Both from
practical and theoretical points of view, the methods and
ideas in complex systems theory will play an important role in
the future research in psychology.

Individual to population In biological and socio-
economic systems, properties at the population level are
ultimately the result of interactions among individual
elements within these systems. Biological systems are
characterized by selection among individuals and competition
among species. Ecosystems are shaped by evolutionary
selection and mutation. Socio-economic systems consist of
many individuals in different roles (consumers, producers,
investors), who interact and compete in local (e.g., regional,
national) and global market institutions. Remarkably,
traditional neoclassical economics has completely ignored
interaction and evolution. Rather it is characterized by

communities of cells

an extreme reductionist approach, in which aggregate

macro behaviour is reduced to the study of an average
representative consumer and firm, behaving rationally and
optimally. However, economics is witnessing a paradigm

shift from the representative rational agent framework to

an interacting agents hypothesis and complexity view. Here,
markets are viewed as conglomerates of many heterogeneous
consumers. Firms and investors are represented as having
bounded rationality, while employing simple, behavioural
decision rules (Hommes, 2006). Evolutionary selection of
behavioural heuristics and social interactions can infuse
discipline into the new research program, by taming the
‘wilderness of bounded rationality’. Interaction among
consumers, firms, and investors at the micro level may explain
emergent properties at the macro level, such as power-law
distributions of firm size, wealth, and financial asset returns
(Axtell, 2001). A classical example of micro-macro interaction,
and arguably the first application of complexity in economics,
is the model of racial segregation of Schelling (1971). He
discovered that the emergent property of racial segregation
in densely populated urban cities, may arise from a tiny
change in initial conditions, namely slight preferences of
individuals for neighbours from their own ethnic group.

Challenges

At present there is a rapidly growing literature on
applications of complexity models of micro-macro

interaction in fields such physics, biology, psychology, and
economics. These models share many features, but also differ
importantly in many ways. At present, a multi-disciplinary
approach would be very fruitful to develop fundamental
methods in complexity modelling, to combine the specific



Figure 4 Models of interacting agents are used to study the
herding behaviour of panicking crowds. (from: Low, 2000)

methodological strengths of each discipline, and to
determine generality and specificity in methodology, to
be able to efficiently tailor modelling effort to the
substantive problem at hand. Some challenges include the
following.

Theoretical issues Complex systems evolve over time,
and a systematic study of the key features of the dynamics
of complex systems is essential. Challenging questions about
the dynamics of micro-macro transitions include: (i) how

are emergent properties related to micro interactions?; (ii)
How does self-organization in complex systems arise? (iii)
what are the ‘simplest complex systems’ or reduced form
models, which still explain the most important emergent
properties and stylized facts observed in data?; (iv) how can
we reverse-engineer the mechanics of complex systems from
their behaviour under a controlled set of external stimuli?;
(v) which features can be explained by a deterministic model,
and which need a stochastic explanation?; (vi) how does
feedback from macro behaviour to micro behaviour affect
the aggregate outcome and emergent properties of complex
systems? (vii) how can we go beyond the paradigm of ‘simple
rules give rise to complex behaviour’ to ‘complex rules
leading to complex behaviour'?; (viii) how do we deal with
searching high-dimensional parameter spaces for identifying
relevant behaviour in complex systems (the needle in the
haystack problem).

Adaptive micro-entities A key difference between

biological and social systems relative to physical systems is
that the micro entities considered are often not invariant,
but may change their properties over various time scales.
An important challenge therefore is how to adapt physics

models of interacting particle systems and apply them to

biological or socio-economic systems. A complexity theory of
socio-economics should contain a theory of ‘smart atoms'.

In particular, the tradition rational expectations paradigm
has to be replaced by a universal theory of heterogeneous
expectations, bounded rationality and learning (e.g. Brock
and Hommes, 1997). A complexity theory of biological
systems should incorporate the interrelation between
adaptive processes of micro entities at regulatory and
evolutionary time scales and the emergent macro-scale
properties (and vice versa).

Brain and mind Relevant research questions in the context
of brain research are: What are the emergent properties

of different kind of neural network structures? Can we
understand the properties and limitations of macro processes,
such as working memory, from the complex emergent
properties of neural activity? How do emergent properties

of neural activation such as awareness, influence this neural
activity? But other questions also arise. One cause (say, child
abuse) has often many different effects, and one effect (say
depression) can have many different origins. Complex system
theory may provide insight in this type of relationships and
points to new types of interventions that are not based on
simple cause-effect models. Similar considerations hold for
understanding neurological and psychiatric disease from a
complex systems point of view.

Prebiotic evolution The transition of non-living to

living systems is a major transition in levels of complexity.
How did self-organizing processes and genetic information
accumulation codetermine this major transition is an ultimate
question for complexity theory. ®
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Figure 5 Network topologies for different values of p
(after: Watts and Strogatz, 1998)
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A second profound discovery was published a year later by
Barabasi and Albert (1999). They introduced the concept
of ‘preferential attachment’ and proposed a model for the
growth of a network where the likelihood that a newly
added node will connect to an existing node depends upon
the connectivity of this node: new nodes prefer to attach
themselves to a well-connected node as to minimise the
distance to other nodes. The obtained degree distributions
can be described by a power law. Such a power law implies
that few nodes have high connectivity (‘hubs’), while most
nodes have low connectivity.

It has been shown that many real networks, such as for
instance the World Wide Web, collaboration networks of
scientists, networks of airports and possibly brain networks
are probably scale-free, at least to some extent (Boccaletti

et al., 2006). Scale-free networks have many interesting
properties including an extremely short path length as in
small-world networks, and resilience to ‘random attack’ but
vulnerability for targeted attacks on hubs. Compared to
small-worlds, where all nodes have the same degree, the
degree of nodes is very different in scale-free networks.

Yet, if we assume that, apart from preferential attachment,
geographical proximity affects the probability of linking (as a
cost constraint), small-world properties can be obtained from
a preferential attachment algorithm as well.

Examples

One important success factor of the modern theory of
complex networks, in particular of the Barabasi-Albert model,
is that the basic logic of preferential attachment applies

to virtually all networks, while the logic can be extended
with additional variables and constraints to understand

the properties that are specific to the network at hand.

This versatility explains its widespread use and further
development in natural and social sciences. Four examples —
out of many - readily illustrate the adaptability of complex
networks to specific domains.

Spatial systems Networks that have a spatial dimension -
like train or airline networks, electricity networks, neural
networks, corporate networks or social networks — are
affected by transportation costs: the cost of a link increases
with geographical distance. This implies that the probability
of a new node linking to an existing node is not only
dependent on preferential attachment logic but also
inversely on distance. As a result, one typically obtains a hub-
and-spoke structure with large distances between hubs each
connected with a subset of nodes at small distance. Complex
networks models can be used to simulate the future spatial
evolution of such networks depending on possible scenarios
(changing the transportation costs, changing the scale
economies at the hub, etc.). Of interest, similar considerations
may play a role in biological networks. »
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Figure 6 The official map of the network formed by the
London underground

Brain research There is now increasing evidence that
anatomical and functional connectivity networks in the

brain display the small-world phenomenon and have

degree distributions with ‘heavy tails’ (Stam and Reijneveld,
2007). However, most studies show that brain networks
deviate in significant ways from the classical scale-free

model of Barabasi and Albert. In particular, fMRI studies
have suggested a degree distribution with power law and
exponential components. Such a degree distribution can

be explained by growth models of brain networks, which
take into account biological constraints. Furthermore, there
is increasing evidence that the complex structure of brain
networks breaks down in various neurological and psychiatric
disorders such as Alzheimer’s disease, brain tumours, epilepsy
and schizophrenia. Modern network theory provides a
general framework for understanding how different types
of network damage (‘random error’ versus ‘targeted attack’)
could bring about these pathological network changes.

Text With the advent and success of digital text archives,
there is an increasing interest in the application of network
theory on inter-textual reference structures as pioneered
by De Solla Price (1965) in the context of scientific citation
networks. Other examples of such reference structures

are citations between patents, references between legal
sentences, hyperlinks between Web pages, etc. Generally,

a reference can be interpreted as a recommendation, thus
guiding search processes through complex networks. The
unchallenged success of Google’s search engine, which is
primarily based on hyperlink structures, is a prime example of
the relevance of complex network theory in this domain.

Food webs The structure of food webs has been shown to
exhibit small-world properties. An important implication of
food-web research holds that one can assess the resilience of
ecosystems regarding the extinction of one or more species.
More specific co-evolutionary models have been proposed
that model the interaction structure of species as a complex
graph using a variety of techniques. In such studies, the
similarities between extinction events of species in ecosystems
and extinction events of technologies in economies, are often
highlighted, and provide fertile ground for cross-disciplinary
research between biologists and economists (Frenken, 2006).

Challenges

The discovery of small-world networks in 1998 and of scale-
free networks in 1999 was noted by scientists in many
different fields, and sparked a large body of theoretical

and experimental research that is growing to this day.

Some excellent reviews are provided of the current state

of network theory and its empirical basis (Boccaletti et al.,
2006), which reflects the rapid progress as well as the newly
emerging topics, which we summarise under four challenges:

Dynamics of networks First, theoretical advances

reside in the generalisation of the Barabasi-Albert model of
evolving networks, or dynamics of networks, for (i) directed
graphs in which links are not necessarily mutual, (ii) to
weighted networks in which links can be more or less strong
and (iii) to hierarchical networks in which a hierarchy exists
of modules-within-modules-within-modules, where a module
is characterised by a high density of links. Though some of its



Figure 7 Anatomical and functional connectivity networks
in the brain display the small-world characteristics which

become disrupted in the case of disease

human brain <«————> global network

properties are being understood, explanatory models are still
to be developed that can generate such network structures
dynamically under realistic assumptions.

Dynamics on networks Second, complex networks
research is used to study the diffusion processes otherwise
indicated as dynamics on networks as distinct from dynamics
of networks themselves. Examples include the diffusion of
information and knowledge, the diffusion of diseases as in
epidemics, and synchronization processes in model and real
neural networks. For random networks, such dynamics are
now being understood well. The dynamics on small-world
and scale-free networks, let alone directed, weighted and
hierarchical networks are much less well understood as they
rely more heavily on computational methods. In particular,

a relation has been suggested between network topology
and the threshold for transitions between asynchronous and
synchronous states on such networks, which could be relevant
for understanding phenomena such as epileptic seizures.

Development constraints Though complex-network
models replicate global properties of empirical networks,
they often fail to explain more specific properties stemming
from development constraints. To advance empirical
application, both retrospectively and prospectively, models
need to be elaborated to include congestion effects, entry
barriers effects, aging of nodes and geographical constraints.
Such an approach also explains why there can exist critical
time windows during development. Related to this, little is
known about the adaptive capability of networks in the face
of environmental influences, including random and targeted

attack removing nodes and links, where adaptive capability 21
(resilience) can be understood as the probability of recovery.

Typical fields of application here are critical infrastructures
breakdowns, loss of biodiversity, group conflicts, and recovery

from disease.

Design of networks Complex network models

are recently being used in the design of networks for
distributed information systems. In contrast to classical top-
down approaches, a complex-network approach allows
decentralised nodes to use local information for managing
connections to other nodes. Decentralised approaches often
exploit what are known as epidemic protocols, and have
been followed for the construction of overlays, semantic
clustering of nodes, information dissemination, and data
aggregation (see also Kermarrec and van Steen, 2007). ®






Figure 8 The basis of ensemble prediction illustrated by the
prototypical Lorenz (1963) model showing that predictability
is flow dependent. (a) A forecast with high probability (b)
forecast with moderate predictability (c) forecast with low
predictability. (From: Palmer, 2007)

Examples

Earth system modelling Leith and Kraichnan (1972)
estimated that the predictability of large-scale weather
extends well beyond a week. At that time actual forecasts
had a scale which was an order of magnitude smaller. This
encouraged research in improving the quality of numerical
weather forecasts. One of the priorities was to improve
methods for feeding corrections from observations into

the model simulation. An important development was the
pioneering of so-called ensemble forecasting techniques (see
Figure 8).

Using weather forecasts models for climate forecasts seems
like a trivial extension, but it was an extension right into the
domain of complexity theory. To start with, one does not
look at the daily weather, but at the climate. This also means
that the details of the initial state of the atmosphere are not
important anymore. Secondly, other components do enter
the system, such as the ocean, the biosphere and cryosphere,
each with its own time scale or time scales. The complex
systems that result from combining these components are
called Earth System Models. Although Earth System Models
form the basis for much of the IPCC Climate Assessment, the
predictability of climate change and the estimation of the
uncertainty in our estimates have remained central issues.

Desertification is another example of a complex earth-
system process in which predictability plays a central role.
In desertification, well-vegetated areas exhibit vegetation
patterns before undergoing a sudden catastrophic and

irreversible transition to a desert state. The work by Kefi

et al. (2007) indicates that this process is governed by a
power-law behaviour in the spread and magnitude of the
vegetation patches. This phenomenon may, in principle, be
used as a predictive tool for the occurrence of desertification,
even if the insight in the mechanism that drives the power-
law behaviour is still limited. Although desertification and
weather systems have quite different dynamics, in both cases
there is an intimate relationship between complex behaviour
and predictability.

Financial markets The stock market presents yet another
example of a highly unpredictable system. According to the
traditional view financial investors are fully rational and
stock markets perfectly efficient. In such a world movements
in stock prices are only driven by random news about the
economy (e.g. interest rates, economic growth, etc.). But the
standard view is at odds with extreme movements observed
frequently in financial markets worldwide, for example the
20% drop of the Dow Jones index on black Monday, October
19, 1987 or, more recently, the large movements due to the
credit crisis.

In the last decade an alternative view based upon complexity
theory has been proposed. The most prominent example has
been the Santa Fe artificial stock market (Arthur et al., 1997),
where the interaction of a large population of fundamental
traders and technical analysts leads to large swings in

stock prices triggered by news but reinforced by herding »
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Figure 9 The global spread of the H5N1 influenza, or bird
flu (2007). In yellow, countries with poultry or wild birds
killed by the H5N1 virus. In orange, countries with human
cases of the H5N1 influenza. (from Wikipedia)

behaviour. Using a simpler, stylized version of this model,
Brock and Hommes have shown that evolutionary selection
among simple investment strategies may lead to instability
and chaotic stock price fluctuations, with temporary
bubbles and unpredictable crashes, very similar to real
markets (see Hommes 2006). In fact, agent-based financial
market models can reproduce important ‘stylized facts’ or
emergent properties observed in real financial data, such as
unpredictable asset returns, clustered volatility (i.e. irregular
switching between quiet and turbulent phases) and fat tails.

Epidemiology of diseases Infectious diseases have had
a decisive influence on the history of mankind, and also the
future asks for predictions and rational control decisions. The
spatio-temporal dynamics of an infectious disease, such as
HIV or the bird flu is a complex process, driven by the spread
of micro-organisms and resistance genes, and often fuelled
by the very use of antibiotics. It has a dominant multi-scale
character, for instance since the transmission is determined
by the nature of individual contacts - compare HIV to the
bird flu - while the disease occurs on a global scale. It is
natural to model the evolution of a disease by a dynamically
evolving network. Contacts between individuals change and
are predominantly short range and centred, but the relatively
few long range contacts are essential for the global dynamics
of an epidemic.

The predictability of the possible occurrence of an outbreak
and the evolution of an epidemic are central themes in the
study of epidemiology of diseases, see for instance Day and
Proulx (2004) in which a theory for predicting both the short
term and long-term evolution of virulence is developed.

Traffic management Transport is another discipline
witnessing a shift to multi-scale modelling. The interest of
transport modellers involves different time horizons. First,
traffic-flow prediction is focused on traffic flows during the
day or even segments of the day. Second, transport demand
models are focused on longer term prediction of transport
demand as a function of demographic and economic change,
jointly with the impact of infrastructure, institutional, land
use and economic policies.

Traditionally, traffic-flow forecasting has been based

on operations-research allocation algorithms applied to
aggregates of travellers. Lately, however, scientists have
started applying agent-based micro-level simulation models,
with emerging, nonlinear aggregate traffic-flow patterns (see
e.g., Balmer et al, 2005; Rosetti et al, 2005). An interesting
aspect is that travellers can actively decide what to do if
traffic-flow predictions are available. Different situations may
emerge — multiple user equilibrium, bifurcation or oscillatory
behaviour.

For transport demand-modelling activity-based models

are the state-of-the-art. They simulate which activities are
conducted where, when, for how long, and with whom.
These models depend on data collected for typical days. Only
very recently, dynamic models have been developed, these
models are based on notions of multi-scale interactions,
nonlinear dynamics, agent-based technology, and emerging
aggregate behaviour. They incorporate both processes of
gradual change, but also sudden bifurcation and phase
transitions.



Challenges

Many of the problems that face society involve inherently
complex processes which are studied by extended models
that include many different scales in time and in space.
However, it is a priori far from clear how the outcome of such
a model simulation relates to the behaviour of the original
real-world system. Therefore, it is essential to asses the
uncertainty in the model predictions, rather than just making
predictions. Moreover, it is also of interest to estimate the
predictability of the process itself, i.e. the reliability and the
resolution of a prediction with the best possible model. Of
course, all this applies especially if one tries to extend the
frontier of predictions.

We see a number of basic research challenges of a nature
that combines theoretical and empirical aspects, which are
relevant for predicting the dynamics of complex systems.

The predictability of multi-scale systems When does
including more details induce better predictability? When

is it possible to average small scales into large-scale effects
without affecting the long-term predictability of a model?
When does including new, large-scale, components affect the
stability and the regimes of the system?

What determines the predictive power of a model?
This is a fundamental issue that is especially relevant in the
context of long term predictions. A model may be accurate
on a short time scale, but may exhibit unrealistic behaviour in
the long run. What determines whether a weather model is
suitable for modelling climate?

Surprising consequences of changes in control 25
parameters Is it possible to quantify the vulnerability

of a system to a catastrophic event? For example, can it be

recognized whether a vegetated area is on the verge of
desertification?

Managing uncertainty in complex systems How is
the uncertainty in predictions related to uncertainties in the
input data and model formulation? When should we measure
more, and when should we model better?

Each of these questions has the promise of paradigm-shifting
advances in understanding complex systems, and is relevant
for more than one field of science. For complex-systems
research, the challenge is in developing new tools and
strategies that have value beyond one specific context and
that can be connected to real-world situations. ®m






Opportunities

‘Complexity’ has evolved into a unifying concept in the
study of processes and phenomena that appear in nature
and society. Increasing computer power has enabled explicit
simulations of elaborate, extended, multiple-scale, and thus
highly complex, models. This has opened up completely
new avenues in science and technology.

In this proposal, three transdisciplinary research themes

— Micro-Macro, Networks, and Predictability — have been
identified, that transcend the boundaries of traditional
disciplines and that arise in many complex systems. It

is argued by way of examples from a large variety of
disciplines - ranging from physics and meteorology to
neurophysiology and sociology - that as the systems under
investigation grow in complexity, the associated scientific
questions share more and more common features. The
challenges formulated in the context of the three research
themes show that the most promising opportunities for
complexity research lie in combining approaches and ideas
from different disciplines. This way, novel and potentially
breakthrough insights can be obtained that go beyond the
setting of specific systems. Moreover, there is an intimate
interplay between developing these transdisciplinary
insights and a specific disciplinary complex system: novel
insights can both be inspired by, and be applied to a given
complex system in psychology, genetics, economics, etc.

For this reason, there is a need for instruments that
stimulate the study of transdisciplinary questions in
complexity research and that promote the exchange of
ideas within the scientific community. Such a community
does not yet exist in the Netherlands. However, in
combination with the existing strengths and highlights of
the Dutch scientific community, recent developments within
the Dutch scientific landscape show that there is a huge
potential for a scientifically excellent, transdisciplinary,
‘Complexity’ community in the Netherlands.

Therefore, we - the authors of this proposal - firmly believe
that it is now time to seize the opportunity and to build
such a community by initiating a program on ‘Complexity’
research. W
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processes, and control are distributed to achieve scalability. 29
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areas, concepts of self-organization and management play a
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