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Synopsis Ecogenomics is a convenient descriptor for the application of advanced molecular technologies to studies of

organismal responses to environmental challenges in their natural settings. The development of molecular tools to survey

changes in the transcript profile of thousands of genes has presented scientists with enormous analytical challenges. In the

main, these center about the reduction of massively paralleled data to statistics or indices comprehensible to the human mind.

Historically, scientists have used linear statistics such as ANOVA to accomplish this task, but the sheer volume of information

available from microarrays severely limits this approach. In addition, important information in microarrays may not reside

solely in the up or down regulation of individual genes, but rather in their dynamic, and probably nonlinear, interactions. In

this presentation, we will explore alternative approaches to extracting of these signals using artificial neural networks and

fractal geometry. The goal is to produce predictive models of gene dynamics in individuals and populations under envir-

onmental stress and reduce the number of genes that must be surveyed in order to recover transcript profile patterns of

environmental challenges.

Introduction

The advent of microarray technology nearly a decade

ago presented biologists with unprecedented access

to the transcription profiles of organisms and unpar-

alleled access to information on the molecular res-

ponses to environmental stress and disease (Brown

and Botstein 1999; Young 2000; Waters and others

2003; Williams and others 2003). This technological

power did not come without a cost as methods to assess

reproducibility of the data and analytical means to turn

the data into information lagged far behind the devel-

opment of molecular tools. In the main, the issues have

been normalization methods to account for nonbiolo-

gical sources of variation including starting material,

labeling, hybridization, and local and global bias in

background due to differences between dyes (Cy 3

versus Cy 5) (van de Peppel and others 2003).

Further analysis of the data, once “normalized” is com-

plicated by its massively paralleled nature, which, in

the main, precludes the application of linear statistics.

While the technical and analytical methods

employed to assess changes in transcript profiles are

important to understanding microarray data, this

work seeks to explore a different territory.

Functional genomics as currently understood, seeks

to identify genes that are significantly affected by

stressors and place the changes within the context of

their metabolic pathways. Hence, the emphasis is

upon analytical methods that identify significant

changes and discard the genes that change little or

not at all. EcoGenomics as originally described by

Chapman (2001) has a different perspective. It is to

understand the “gestalt” of transcription signatures;

their patterns, if you will. The differences between func-

tional genomics and EcoGenomics are equivalent to the

difference between ecotoxicologists that monitor key-

stone species as indicators of environmental conditions

and ecologists that wish to understand the function of

the ecosystem. Clearly there is some overlap, but eco-

toxicology would emphasize organisms at the extremes

(highly sensitive to change), while ecologists would con-

sider those species that show no changes as important

features of ecosystem function. In this context

EcoGenomics would place value upon transcription sig-

natures that do not change as a result of environmental

conditions, while functional genomics might not.

So how does one recover the patterns? Ecology has a

long history of describing systems in terms of diversity,

evenness, and patchiness. These terms have no counter

parts in molecular biology even though the frequency
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distributions of species in ecosystems (MacAuthur

and Wilson 1967) bear an uncanny similarity to the

frequency distributions of mRNA transcripts in

tissues, assuming that fluorescence is proportional to

transcript abundance (Fig. 1). More recently, ecologists

have been using fractal geometry to study a variety of

phenomena related to pattern recognition ranging

from the distributions and abundances of phyto-

plankton and benthic communities (Azovsky and

others 2000; Lovejoy and others 2001), and the influ-

ence of physical parameters on those distributions, to

the influence of water movements on the branching

patterns of marine sponges (Abraham 2001). The

motivation for this development has been the recog-

nition of the relationship between patterns and scale

in ecology (Turner and others 1991) and the difficulties

in scaling measures of species distributions in time

and space. Fractal geometry solves many of the

problems.

Fractals are objects whose topological dimensions

(points, lines, and planes) are different and usually

greater than the capacity dimension. The capacity

dimension is a phase space in which noninteger dimen-

sions are permitted and usually defined as

Dcap ¼ �lim lnNð Þ/ln eð Þ‚as e approaches 0‚½

where N is the number of elements which cover the metric

space and e is the diameter of N. In addition, true fractals,

such as the well-known Mandelbrot and Sierpinski

fractals, also satisfy the inequality

Dcorr < Dinf < Dcap‚

where Dcorr is the correlation dimension and is

defined in http://mathworld.wolfram.com/

CorrelationDimension.html, while Dinf is the

well-known Shannon information index (or diversity

index in ecology). These measures are often referred to

as the fractal moments analogous to the mean, vari-

ance, and skewness of objects in Euclidean space.

Fractals are also self-similar, meaning that they contain

copies of themselves within themselves, and, while

they may not exhibit the same details at all scales,

they exhibit the same type of structure. Hence, they

are considered to be scale invariant. As such they are

ideal for the study of ecological patterns, such as species

abundances, which can display patterns at a variety

of spatial scales (cf. Azovsky 2000; Lovejoy and others

2001). The usual method for estimating Dcap is the box-

counting method, in which the metric space is pro-

gressively divided in half and counting the number of

boxes, which contain data points. The slope of the line

based on a plot of ln(e) versus ln(N), is the capacity

dimension (cf. http://www.ees.nmt.edu/~davew/P362/

boxcnt.htm, for example). An additional benefit of

extracting Dcap via the box-counting method is that

one can estimate the number of boxes necessary

to recover the original metric space and their sizes.

This is important in ecology as it informs us as to

the number of samples and spatial scales over which

they should be collected, in order to recover the

original geometry of distributions and abundances of

the species.

The benefits of employing fractal geometry to

ecological situations should be obvious, but its appli-

cation to microarray data may be less clear-cut.

Most methods that compare microarray data involve

normalization to some standard or reference material.

This is necessary to compensate for the nonbiological

sources of variation mentioned above. Normalization

of microarray data has taken several forms, but gener-

ally relies upon linear transformations of the data.

Some investigators have employed housekeeping

genes under the assumption that these genes were

largely stable across the range of experimental condi-

tions. For the most part this has been dismissed in

favor of “all genes” or quantile normalizations under

the assumption that relatively few genes vary in exp-

ression levels between samples. This assumption has

been shown, in some cases to be unrealistic (van de

Peppel and others 2003) and these normalizations

mask general changes in transcription levels from vari-

ous stressors. Others have employed “spike in” controls

at a single or linear gradient of concentrations to

establish standards against which to measure experi-

mental data (van de Peppel and others 2003). While the

latter approach is sound and offers great promise, it is

technically difficult to execute. Regardless of the means

by which the data from different arrays are brought

to the same scale, most investigators have sought to

Fig. 1 Plot of the 300 most intensely fluorescent genes. On
the x-axis the genes were ranked according to their
intensity values (y-axis).
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identify genes that are up-regulated or down-regulated

by some degree of fold changes. Placing confidence

limits of fold changes, challenges the application of

linear statistics due to the degrees of freedom (number

of variables ¼ genes), even if one accepts the validity

of current normalization protocols. This is the “Curse

of Dimensionality” as recognized by Bellman (1961)

where the available output hyperspace expands expo-

nentially with linear increases in the number of input

variables. As a concrete illustration, to examine all pos-

sible single-gene impacts with a very modest 1000 gene

array would require 1001 observations or arrays. To

examine all possible linear pairwise interactions of

the same array would require nearly 500,000 observa-

tions and the problem grows exponentially worse as

higher dimensional interactions are considered. Yet it

is the interaction, and presumably nonlinear interac-

tion, between genes that initially prompted our interest

in the technology. By virtue of their ability to identify

the number of variables necessary to describe the

original space, fractals can provide a means of address-

ing this problem.

Machine learning tools such as Artificial Neural

Networks (ANNs, Hagan and others 1996; Khan and

others 2001), Support Vector Machines (SVMs, Vapnik

1998) and Genetic Algorithms (GA, Holland 1975),

have been used as alternatives to linear statistical

methods to deconvolve patterns in complex data.

Unlike linear approaches they require little or no

mechanistic understanding of the system, but do

require large amounts of data. As such, they would

seem to be ideally suited for the massively paralleled

nature of microarray data. These methods, however,

are computationally intense and for modest arrays con-

taining, say, 10,000 features might require extensive

computation time to find optimal solutions. Further,

the training set for ANNs needs to contain large

numbers of records (individual microarray slides),

and while there is no set minimum, it is our experience

that 100–150 are required for adequate training. We

do not know of a microarray dataset this large. The

ability of fractals to reduce dimensionality and retain

original geometry would vastly accelerate the discovery

of patterns and processes using these tools (Wang and

others 2005).

In this article, we will discuss the application of

some tools from fractal geometry to microarray ana-

lysis and the implications for EcoGenomics. As we will

show, the analysis provides some unique insights

into patterns and processes, in addition to reducing

the information necessary to recover those patterns.

In the main, however, our intention is to use these

tools as a prelude to more sophisticated analyses

such as ANNs.

Methods and materials

Microarrays

The development of ESTs for printing the microarrays

used in this study was presented elsewhere (Gross

and others 2001; Robalino and others manuscript in

preparation, www.marinegenomics.org) and the details

of printing and quality control will also be presented in

a separate publication (J. Robalino and others manu-

script in preparation). In brief, the arrays contain

13,056 individual features, comprising 2469 unigenes

along with landing lights, positive and negative con-

trols, and viral genes derived from the white-spot

syndrome virus (WSSV). WSSV is a lethal pathogen

of the Pacific white shrimp, Litopenaeus vannamei, and

these genes have been included in the arrays as a

means of testing for viral gene expression in challenged

individuals.

RNA samples and microarray hybridizations

Total RNA was obtained from tissues stored in RNA

later (Ambion) using RNeasy kits (Qiagen) according

to the manufacturer’s instructions. For hemocytes,

cells were freshly recovered from hemolymph by cent-

rifugation, and used for RNA extraction as described

above. To generate labeled target RNA, total RNA

(1 mg) from gills, hepatopancreas, or muscle obtained

from individual shrimp was used in 1 round of linear

RNA amplification using the Amino Allyl MessageAmp

II aRNA kit (Ambion). For hemocyte samples, essen-

tially all the RNA extracted from one individual

shrimp was used, and 2 rounds of amplification

were applied. Amino allyl-modified RNA (aRNA)

(10 mg) labeled with Cy3 (Ambion) was used for sub-

sequent hybridizations in every case. For microarray

pre-treatment, slides were rinsed in 0.2% SDS for

1 min, rinsed with water, boiled for 1 min, rinsed

again with water, and dipped in 70% ethanol before

drying. Arrays were prehybridized in 50% formamide,

2.5· Denhardt’s solution, 4· SSPE, 2.4% SDS, and

100 mg/ml salmon sperm DNA for 1 h at 50�C.

Labeled aRNA was boiled for 1 min and prehybridized

at 50�C for 1 h in 33% formamide, 2.6· SSPE, 1.6%

SDS, 1.7· Denhardts, poly dA (1 mg/ml), and mouse

cot-1 DNA (1 mg/ml). Hybridization was performed

overnight at 50�C in an air incubator (SlideOut,

Boekel). Washes were as follows: once in 2· SSC–

0.1% SDS for 5 min, twice in 0.2· SSC–0.1%SDS

for 5 min, twice in 0.2· SSC for 5 min, and once in

0.1· SSC for 5 min. After a brief rinse with water, the

slides were dried and scanned using a ScanArray

Express instrument (Perkin-Elmer). Images scanned

at 67 PMT gain and 90% laser power were used for

tissue-specific profiling analyses. Raw images were

904 R. W. Chapman et al.



processed and mapped using the GridGrinder tool

integrated into the microarray analysis pipeline at

www.marinegenomics.org.

To analyze the effects of WSSV infection in gene

expression, the hepatopancreas of 8 uninfected and

8 WSSV-infected animals was used to interrogate the

microarray, using the same methods described above.

The infection was allowed to progress for 40 h after

injecting a dose of WSSV sufficient to cause 100%

mortality in 4–7 days (Prior and others 2003). The

data from this experiment were analyzed from

images scanned at 75 PMT gain and 90% laser

power. All of the data from the microarray scans can

be found at and retrieved from www.marinegenomics.

org. The tissue-comparison samples are MGMA#

386–397 and the viral-challenge samples MGMA#

362–378.

Fractal analyses

Previous studies employing fractal geometry to

microarray analyses have relied upon either the infor-

mation (Cazalis and others 2004) or capacity dimen-

sion (Wang and others 2005) estimates as baselines for

“good” solutions to probe selection for clustering.

However, there are three measures of fractal dimen-

sions that have value in the biological interpretation of

microarray data. The capacity dimension (Dcap), which

describes the space occupied, the information dimen-

sion (Dinf) which is the Shannon Information or

Entropy measure, commonly used as a measure of

community diversity in ecology, and finally, the

correlation dimension (Dcor) which measures the cor-

relation between points in phase space. It is also

known as the attractor space or dimension as it

describes the tendency of fractal objects to exhibit

chaotic orbits in an equilibrium space. While the

biological meaning of the measures will become clearer

later in this report, it is valuable at this point to illus-

trate the points via graphics.

In Figure 2, we illustrate the intensity plots for

four microarray slides where each spot on the line

represents the average intensity of each unigene on

the microarray. The unigenes were average solely for

the purpose of illustration. We used the program, FD3

(Sarraille and DiFalco 1993) to estimate the fractal

dimensions, which divides the space into 232 line seg-

ments and counts the number of segments that contain

a spot. The program then halves the number of

segments and repeats the counting. The program con-

tinues halving the number of segments until the entire

line is treated as one segment. The program is based

upon the methods of Leibovitch and Toth (1989). For

two axes (comparing two microarrays) the segments

are boxes, for three axes cubes, and so on. For the

purpose of this article we will limit our analyses to

one and two embedding dimensions (individual slide

and pairwise analyses). We have written a program in

MATLAB that can run multidimensional compari-

sons as well as individual analyses, run FD3 and

then assign coordinates to individual features. This

work will be reported elsewhere.

We generated means and standard deviation for

replicates of each tissue type from the tissue-

comparison experiment and for the 8 control and

8 viral samples in the WSSV challenge experiment.

An alternative to estimating fractal dimensions was

employed. The approach is shown in Figure 3,

where the values for the individual runs for gill samples

were combined (3 samples) and the capacity dimension

was determined by plotting log base 2 of line segment

size, Ln (e), against log base 2 of the number of

occupied segments, Ln N(e). The negative slope of

the linear regression is Dcap. The Dinf and Dcor were

0
0
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10000 20000 30000 40000 50000 60000 70000

Fig. 2 Raw intensity values after background subtraction of the unigenes in gill (1,2) and muscle (3.4) from two
L. vannamei individuals plotted along a single dimensional axis.
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determined in a similar manner using the appropriate

values generated by FD3 to replace lnN(e).

To estimate the number of features on the micro-

arrays necessary to recover the original geometry, we

fitted a second-order polynomial to the Dcap points and

evaluated the first derivative at a point equal to Dcap

(Fig. 3, poly. Dcap). This returned the value of Ln N(e)

which was used to estimate the number of required

features from an additional plot of Ln N(e) versus

the actual count returned by FD3.

Results

Inspection of Figure 2 shows that muscle has fewer

genes with intensities above 15,000 than does gill.

Intuitively, we would expect that the increase in density

of intensities about 15,000 in gill tissue would increase

the Dcap in gill relative to Dcap in muscle. This is

reflected in Table 1 where the fractal dimensions for

the 4 tissues from 3 shrimp are summarized. The top

half of the table presents the average and standard

deviations for each dimension for each tissue type cal-

culated from individual runs of FD3. Here, the fractal

dimensions of hemocytes and gill tend to be larger

than those of hepatopancreas and muscle. In Table 2,

tests for significant differences in these dimensions

are shown and indicate that muscle differs significantly

from the other tissue in all dimensions except for the

Dcorr comparison to hemocytes. The fractal dimension

obtained by combining all data points prior to com-

puting the dimensions are presented in the bottom

half of Table 1. Here, Dcap is smaller than the average

value computed from individual slides in all tissues.

The opposite is the case for Dinf and Dcorr. The number

of features required to recover Dcap for the individual

tissues is shown in the last row of Table 1 and in general

indicate that larger fractal dimensions require more

features to recover the space. Regardless of the method

used to estimate the fractal dimensions, the tissues

ranked as hemocytes > gill > hepatopancreas >
muscle.

Progressing to pairwise comparisons permits the

fractal dimensions to expand, and these comparisons

are presented in Table 3. Here we see the same general

1914

14

10

12

8

6

4

2

0

–2
24

Log (e)
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Poly- (Dcap)

Fig. 3 Plots of log of segments size (e) versus the log of
the number of segments occupied for the capacity,
information and correlation dimensions from gill tissue.
The negative slopes are reported in Table 1 as direct
estimates. (See text for details).

Table 1 Means and standard deviations of fractal dimensions for comparisons of expression profiles within and between
tissues of shrimp, L. vannamei

Hemocytes Muscle Gill Hepatopancreas

(Capacity)

Avg 0.7036 0.5896 0.6842 0.6581

SD 0.0171 0.0281 0.0068 0.0238

(Information)

Avg 0.8079 0.7305 0.8042 0.7883

SD 0.0344 0.0150 0.0075 0.0217

(Correlation)

Avg 0.7436 0.6934 0.7558 0.7434

SD 0.0441 0.0116 0.0146 0.0269

Capacity direct 0.6462 0.5472 0.6505 0.6287

Information direct 0.8482 0.7948 0.8580 0.8454

Correlation direct 0.8270 0.7840 0.8371 0.8223

Required features 456 385 419 404

Avg ¼ average over three slides and SD ¼ standard deviation over three slides.
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pattern of hemocytes, hepatopancreas and gill having

larger fractal dimensions than does muscle, except for

Dcorr. In these pairwise comparisons Dcorrz remained

approximately the same as in the individual slide ana-

lysis presented in the previous paragraph. These com-

parisons also distinguished Dcap in hepatopancreas

from all other tissues and the significance tests are

presented in Table 4. The averages values of Dinf and

Dcorr were significantly different only in comparisons

of gill versus muscle and hemocytes versus muscle

due to the large standard deviations associated with

these estimates.

Pairwise comparisons can also be made between

tissues (Table 3). The fractal dimensions in these

cross-tissue comparisons tend toward intermediate

values between those of individual tissues. For example,

the cross comparison of gill and muscle generated

Dcap of 0.9154 while the within-gill value was 1.0256

and the muscle value 0.7779. In Figure 4, we plotted

the intensities of gene expression in muscles and gills.

In the upper graph, one muscle sample was used on

the ordinate and another muscle sample was used to

derive the coordinates highlighted in yellow. In blue

are the coordinates generated by a comparison of

muscle versus gill. In the lower graph the reverse is

illustrated. These plots reveal one of the limitations

in using fractal geometry; while Dcap in the gill versus

gill comparison is larger than the corresponding value

in gill versus muscle, the fractal values do not suggest

the skewed distribution of points that indicates the

number of genes that are more highly expressed in

gill than in muscle. The fractals do recover the dramatic

differences in the dispersion of points observed

from within-tissue comparisons.

The fractal dimensions generated by computing

slopes from the combined pairwise outputs of

FD3 are presented in Table 5. In general, these values

are virtually identical to those obtained from averaging

Table 2 Student’s t-test values for comparisons of
dimensions (from Table 1) for L. vannamei tissues

Muscle Gill Hepatopancreas

Hemocytes

Capacity 6.0027 1.8259 2.6891

Information 3.5723 0.1820 0.8347

Correlation 1.9068 0.4549 0.0067

Muscle

Capacity 5.6674 3.2219

Information 7.6117 3.7951

Correlation 5.7960 2.9563

Gill

Capacity 1.8264

Information 1.1995

Correlation 0.7017

Values in bold are significant at P < 0.05.

Table 3 Fractal dimension from the pairwise comparsions
of intensity values from shrimp (L. vannamei) tissues com-
puted from averaging each pairwise combination

Hemocytes Gill Hepatopancreas Muscle

Hemocytes

(Capacity)

Avg 1.0694 1.0536 1.0469 0.9239

SD 0.0337 0.0306 0.0278 0.0178

(Information)

Avg 1.0600 1.0755 1.0528 0.9741

SD 0.1062 0.0583 0.0656 0.0621

(Correlation)

Avg 0.6689 0.7353 0.6894 0.6770

SD 0.1326 0.0758 0.0806 0.0779

Gill

(Capacity)

Avg 1.0256 1.0203 0.9154

SD 0.0284 0.0190 0.0197

(Information)

Avg 1.0649 1.0693 0.9743

SD 0.0439 0.0332 0.0325

(Correlation)

Avg 0.7596 0.7517 0.7139

SD 0.0841 0.0519 0.0435

Hepatopancreas

(Capacity)

Avg 0.9483 0.8843

SD 0.0168 0.0286

(Information)

Avg 1.0164 0.9574

SD 0.0364 0.0460

(Correlation)

Avg 0.7657 0.7056

SD 0.0628 0.0726

Muscle

(Capacity)

Avg 0.7779

SD 0.0292

(Information)

Avg 0.8911

SD 0.0325

(Correlation)

Avg 0.7110

SD 0.0573

Abbreviations as in Fig. 1.
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the individual estimates. The number of features neces-

sary to recover the capacity dimensions of each com-

parison (Table 5) ranged from a low of 332 (gill versus

hepatopancreas) to a high of 426 (hemocytes versus

muscle). These values are consistent with the range

identified in the individual slide analyses presented

above (Table 1).

The second dataset analyzed in the present report

is a viral challenge of shrimp summarized in Tables 6

and 7. Here, hepatopancreas tissue was used in the

microarray analysis and four salient points should be

noted. First, the fractal dimensions in the control

individuals are remarkably similar to those for hepato-

pancreas in the individual tissue comparisons (Tables 1

and 6); however, the number of features required

to cover the space increases relative to the tissue

data, due to a small difference in Dcap. Second, the

standard deviations for the fractal dimensions are

smaller (Tables 6 and 7) than those in tissue-

comparison data (Tables 1 and 3), which is as it should

be due to large sample sizes. Third, we do not see

any large difference in the fractal dimensions

between the controls and virally challenged groups,

except for Dcap and Dinf (Table 6) when the

slopes were calculated from the combined individual

slide outputs, resulting in a 3-fold difference in the

number of features required to cover the space

(Table 6). This difference is not evident in the pairwise

comparisons (Table 7) and a plot (data not shown) of

controls versus controls and controls versus virally

challenged individuals showed a slight tendency for

suppression of expression in virally challenged

individuals.

Discussion

The analyses presented in this article are qualitatively

distinct from those used in most microarray studies

in that we employ background-corrected raw intensity

values and recover all the microarray features necessary

to recover the original geometry. This contrasts with

the normalization of microarrays and identification

of genes with significantly different transcriptional sig-

natures between experimental and control conditions.

It, thus, avoids the complications introduced by nor-

malization procedures, the need for internal standards

and titration discussed by Van de Peppel and others

(2003), and recovers information on general suppres-

sion of transcription due to a stressor or tissue type.

While the above attributes are important to our

understanding and analyses of microarray data, we

are also of the opinion that comparisons of fractal

dimensions offer some important biological insights.

We noted above that the fractal dimensions in tissue

comparisons ranked as hemocytes > gill > hepatopan-

creas > muscle. Given the functions of these tissues,

this ranking makes some sense. Hemocytes are the

primary defense cells in shrimp and respond quickly

Table 4 Tests for significant differences in the fractal
dimensions of the indicated L. vannamei tissues

Muscle Gill Hepatopancreas

Hemocytes

(Capacity) 11.32 1.72 5.58

(Information) 2.63 0.07 0.14

(Correlation) 0.50 1.00 1.14

Muscle

(Capacity) 10.52 8.76

(Information) 5.51 4.44

(Correlation) 0.83 1.11

Gill

(Capacity) 4.06

(Information) 1.47

(Correlation) 0.10

Values employed were the diagonal elements in Table 3 and
in bold are the significant values at P < 0.05.
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Fig. 4 Plots of background subtracted intensities for each
feature on the arrays. Muscle tissue is on the ordinate
and muscle (yellow) and gill (blue) values on the
abscissa in the upper panel. The lower panel is a reverse
plot using gill on the ordinate and gill (yellow) and
muscle (blue) on the abscissa.
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to a diverse array of invading pathogens whereas gills

perform a variety of functions in addition to oxygen

exchange. Hepatopancreas tissue performs a host of

digestive functions, but interacts less directly with

the environment. It is intuitive that these tissues

would exhibit a more diverse array of transcriptional

signatures than does muscle. We must be careful not

to overinterpret the tissue analyses as these are based

upon only three test animals, and larger samples sizes

are clearly in order. It should be noted that the muscle

transcriptome is probably underrepresented in this

microarray, as the EST-mining strategy that led to

the generation of this tool focused on hemocytes,

gills, and hepatopancreas as sources of genes. It is con-

ceivable that this bias influenced the rank of the fractal

dimensions described above.

The viral-challenge experiment also provides

some important, if somewhat unproven, suggestions.

In comparing estimates of Dcap using the output of

all 8 controls and all 8 experimentals (Table 6), we

see that Dcap and the number of features necessary

to recover the fractal space decline in the viral-exposed

group. We interpret this as an indication that

transcription and individual variation in expression

decline under a viral exposure. We note that this is

a very slight decline in the pairwise comparisons of

control and virally challenged shrimp. We could

address this hypothesis in a number of ways. One

way would be to extend the analyses into even higher

dimensional embedding space (more slides compared

at once); however, this approach would come at a

cost. The minimum number of data points required

Table 5 Fractal dimensions from pairwise comparisons of L. vannamei tissues computed by taking the slopes after
combining individual comparisons

Hemocytes Gill Hepatopancreas Muscle

Hemocytes

Capacity 1.0694 1.0535 1.0467 0.9195

Information 1.06 1.0687 1.0545 0.9662

Correlation 0.6689 0.713 0.7023 0.6687

Required Features 350 405 380 426

Gill

Capacity 1.0159 1.0202 0.9114

Information 1.0698 1.0542 0.9727

Correlation 0.7818 0.727 0.7133

Required Features 357 332 400

Hepatopancreas

Capacity 0.9483 0.8872

Information 1.0164 0.9594

Correlation 0.7657 0.7089

Required Features 368 411

Muscle

Capacity 0.7733

Information 0.8938

Correlation 0.7174

Required Features 398

See Fig. 2 for more details.

Table 6 Fractal dimensions for individual slides from
viral-challenge experiment

Control Virus

Capacity

Avg 0.6744 0.6735

SD 0.0071 0.0097

Information

Avg 0.7861 0.7928

SD 0.0121 0.0159

Correlation

Avg 0.7382 0.7510

SD 0.0179 0.0258

Capacity direct 0.6744 0.6155

Information direct 0.7861 0.8410

Correlation direct 0.8382 0.8318

Required features 641 192

Abbreviations as in Fig. 1.

Fractal analysis of microarrays 909



for estimation is 24Fd, where Fd is the fractal dimension

(Liebovitch and Toth 1989) and as we do not

know what Fd is (it is what the analysis is trying to

find), the number of axes (embedding dimensions) is

usually taken as a surrogate (Sarraille and DiFalco

1993). In this case, where our arrays contain 13,056

features, we are limited to 3 slide comparisons (212 ¼
4096 < 13,056 < 216 ¼ 65,536). This also suggests

that more than 4 slide comparisons using fractal

geometry are unlikely to ever be achieved due to

space limitations on even the most densely populated

microarrays.

The analyses in this article also indicate that all of

the comparisons, whether done in one or two embed-

ding dimensions, are not true fractals where Dcap >
Dinf > Dcorr, because in general Dinf > Dcap.in these

analyses. This inequality is usually satisfied (asymptot-

ically) when rather simple processes underpin the

overall shape of the object under investigation. For

multifractal sets, where multiple processes acting at a

variety of scales may underpin the overall geometry,

this inequality may not hold. The failure of our analyses

to satisfy the inequality most likely indicates that the

transcript profiles are responding to multiple driving

forces and is consistent with our current (albeit

limited) understanding of the genome and metabolic

processes.

We are not unaware that the reader is probably

curious about the genes identified by fractals as

important in recovering the capacity dimension. We

have remained deliberately silent on the issue for

two reasons. First, most of the line segments in indi-

vidual slide analyses or boxes in pairwise comparisons

contain many genes, any one of which would serve

as a surrogate for the others in subsequent analyses

such as ANNs or clustering. Second, and more import-

ant, is that gene selection for subsequent analysis or

re-designing microarrays as monitoring tools for

specific (or even general) environmental challenges is

a field ripe for the application of genetic algorithms as

has been done for probe selection for oligonucleotide

arrays (Cazalis and others 2004). Genetic algorithms

take principles from biology to find optimal solutions

to a variety of optimization problems, including those

in engineering (Holland 1975). In this case, we would

construct line segments (chromosomes), equal to the

number of features necessary to recover the geometry,

that contain various combinations of genes from each

line segment identified by the fractal analysis. These

chromosomes will then be allowed to mutate (swap one

gene from a segment with another from the same

segment) and recombine (swap contiguous segments).

Finally, the chromosomes are subject to selection

where superior solutions to the problems are allowed

to survive to the next generation. Over multiple

generations of mutation, recombination, and selection,

the genetic algorithm can find the optimal selection of

genes that best solve the problem. The challenge of

designing a program for this purpose is a subject for

future work.

We view fractal analysis as largely a front end

or selection tool for other analyses such as ANNs,

Self-Organizing Maps, and cluster analyses. In the

future, this may lead to analysis by metabolic control

networks or biochemical systems networks appro-

aches outlined by (Voit 2000; Voit and Almeida

2004; Leibovitch and others 2005; Shehadeh and

others 2006). For the moment, the potential for

fractals to address important questions concerning

the application to systems biology is intriguing. In a

recent book, Wagner (2005) discussed the notion of a

neutral space where organisms can adopt a variety of

solutions to the challenges of life, all of which are

roughly equivalent. Some parts of the neutral space

may be more densely populated than others. We are

interested in the potential for fractal geometry to char-

acterize this neutral space and address one of the ques-

tions Wagner poses in the epilogue, “Is it possible to

infer the global structure of a neutral space from a small

sample, a small number of biological systems within

that space?” We suspect that fractal analysis of micro-

array data can describe the size of the space, how it is

populated and via the correlation dimension, how it

will behave.

Table 7 Average and standard deviation of fractal
dimension for pairwise comparisons of virus challenged and
control shrimp (upper portion)

Control
versus
Control

Virus
versus
Virus

Control
versus
Virus

Capacity

Avg 0.9489 0.9476 0.9467

SD 0.0122 0.0112 0.0205

Information

Avg 1.0018 1.0455 1.0266

SD 0.0390 0.0495 0.0417

Correlation

Avg 0.6729 0.7380 0.7086

SD 0.0473 0.0760 0.0609

Capacity 0.9495 0.947 0.9471

Information 1.0335 1.0427 1.0256

Correlation 0.7183 0.7324 0.7073

Box 571 577 585

The lower portion are the fractal dimension computed by
taking slopes from the combined outputs.
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