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Abstract

Daniel White’s Mandelbulb, with its fractal features on all axes, is possi-
bly the closest existing three-dimensional analogue to the 2D Mandelbrot
set.

The classic Mandelbrot set is based on the iteration of z «— 2* + cin
the complex plane, thus the most common 3D extension to the “Mandel-
brot” set is the iteration of ¢ «— ¢ + ¢ on quaternions. The Mandelbulb,
instead, extends to three dimension the geometric interpretation of complex
squaring.

In this paper, I propose an alternative explanation of the Mandelbulb
formulas using standard quaternion arithmetic, with the hope of adding
the necessary mathematical rigor to the discovery of the Mandelbulb. A
novel quaternion formulation is derived for the Mandelbrot iteration for-
mulas; by parameterizing this formula, and appropriately choosing the pa-
rameters, the various Mandelbulb fractals are produced without resorting
to non-standard algebras.

Figure 1: The entire exponent-8 Mandelbulb and a zoom on a 3D structure.
Pictures by Krzysztof Marczak and Daniel White.



1 Introduction

An extension of the Mandelbrot set to three dimension is a kind of holy grail
for fractalists. The hurdles are many and stem from the inherent difference
between the two- and three-dimensional spaces: no true analogue of the com-
plex field in three dimensions, no three-dimensional conformal mappings, the
hairy ball theorem. .. and besides all this, the expectations for such an object are
incredibly high!

There are two main extensions of the Mandelbrot and Julia sets, both of
them to four dimensions. One is to use quaternions instead of complex num-
bers. In order to reduce four dimensions to three, a “stack” of parallel 4D
planes is intersected with the object and the intersecting voxels are plotted. The
resulting objects possess complexity, but not the infinite level of detail shown
by the 2D Mandelbrot and Julia sets—some of them are basically solids of rev-
olution, “lathed” versions of the 2D Mandelbrot set.

Another 4D expression of the Mandelbrot set does not use quaternions, but
rather composes four coordinates from the two parameters of the iteration, z
and c. Then the standard complex iteration is used. The 2D slices of this set
are very interesting, since they include both the Mandelbrot set (lying on the
zp = 0 plane) and the Julia sets (corresponding to all the constant-c planes).
However, the 3D slices also fail to provide the infinite detail and sheer beauty
of their 2D correspondents.

From 2007 to 2009, Daniel White experimented with a new approach to the
quest, whose resulting fractals he named Mandelbulbs. In order to understand
it, I should digress shortly and explain some properties of complex numbers.
In addition to using a purely mathematical description in terms of complex
numbers, the Mandelbrot set’s orbits can also be studied geometrically. The
real and imaginary parts 2 = a+1b are represented on the 2D plane by using the
real axis as the z axis, and the imaginary as the y, and the arithmetic operations
also have a geometric interpretation.

Addition is obvious. In order to understand multiplication, complex num-
bers have to be visualized in a different way using polar coordinates. The posi-
tion of a point in a plane is identified by the distance p from the origin, and the
angle 0 between the positive x axis and the point. This complex number can be
written compactly as pe'?, and the geometric interpretation of multiplication is
derived as follows:

pet® = p1ei® . pyett> = p1p26i(91+02)
The result of the multiplication z; 2 is a point that is obtained from z; by stretch-
ing it by a factor p,, and then rotating it by an angle 05; and the result of squaring
is obtained by squaring the distance from the origin and doubling the angle
from the positive z axis.

The Mandelbulb fractal rests on the idea of extending these concepts to



three dimensions; the rest of this paper will discuss this and how to express
the result using well-known mathematical theories. Sections 2 and 3 explain
the discovery and math of the Mandelbulb fractal. Section 4 explain the basic
concepts behind quaternions, and Section 5 explain how the definition of the
Mandelbulb can be expressed using quaternions. Section 6 gives quaternion
definitions for other mathematical concepts explored together with the Man-
delbulb fractals. Finally, 7 concludes the paper.

2 From 2D to 3D

Daniel White’s intuition then was to invent a meaningful way of squaring and
adding points in 3D space. To do the former, he had to square the distance
and somehow “double” the angle between the positive x axis and the point in
exam. The point is then translated by ¢, and the two steps are repeated until
either the sequence diverges or a given number of iterations is reached. This
idea had actually been proposed before by Rudy Rucker, but his formulas had
a small error that caused them to produce less interesting results.

Many things in this scheme work out easily. For example, Euclidean dis-
tance in 3D space is similarly enough to 2D that the divergence condition is the
same: as soon as the distance of z from the origin exceeds 2, the iteration can
be interrupted. Other things are instead noticeably different. For example, it
is hard to define the effect of squaring on angles. 3D space can be described
in spherical coordinates that couple a distance and two angles—corresponding to
two rotations around two different axes. However, rotations in 3D space are
not commutative. In fact, applying White’s idea but choosing different angles
and axes gives rise to very different fractals.

On top of this, there is some uneasiness due to the fact that 3D complex
numbers were sought by mathematicians for decades and in the end they set-
tled for four-component quaternions w + ir + jy + kz, despite these possess
strange properties such as noncommutative multiplication. The infinite possible
ways to define the 3D rotation give the feeling of banging one’s head against
dead ends. Searching for the properties of three-component numbers whose
multiplication is (or seems to be) commutative, feels too much like a 21st cen-
tury version of squaring the circle.

Nevertheless, nothing suggested White’s construction to be fundamentally
flawed, and it produced (very) nice pictures, especially when the 22 + ¢ was
tweaked to include higher exponents'. This is a winning combination for frac-
talists, who proceeded to experiment with many different definitions of rota-
tion. For all of them, the Mandelbulb iteration with exponent n is then obtained
by the following steps:

I This was first tried by Paul Nylander.



1. compute the spherical coordinates (p, 6, ¢) of the point ¢ = (z., ye, zc)
being examined?;

2. compute the rotation corresponding to a point—remember that complex
squaring, by doubling the polar-coordinates angle, applies a different ro-
tation for different points;

3. apply the rotation n times to the point (p™, 0, 0);
4. translate the result by c.

The urge to write this in a form that resembles Julia and Mandelbrot’s z «
2" + cis hard to resist, so White defined 2" in 3D space as applying steps 1- 3
of the above procedure. The actual details of exponentiation of course depend
on the actual rotation chosen for step 2.

3 [Experimenting

White himself tried many choices, but as of today, there are three main contes-
tants to the title of “best Mandelbulb rotation”. Remember that we are defin-
ing a rotation whose details depend on the point being rotated; hence, all three
compose a rotation on the z axis and a rotation on the y axis, parameterizing
them by the two angles in the spherical coordinates of a point—the azimuth 0
and the elevation ¢.

R.(0) - Ry(0) )
R.(0) - Ry(—¢) 2
R.(0) - Ry(7/2 - ¢) ®)

Each of the three has interesting properties, and the first two degenerate
to R.(0) (and hence to the Mandelbrot set) on the zy plane. (1) is possibly
the most natural solution and produces a nice exponent-2 Mandelbulb, but
it has the apparent disadvantage that (z,y,2)! = (z,y,—2). Instead, (2) has
(z,y,2)" = (z,y,2). Even then, (3) appears to be much more weird, since
(z,y,2)" = (0,0,1).

Equation (2) was discovered by Paul Nylander, who then proceeded to de-
fine a fairly complete algebra with commutative (but nonassociative) multipli-
cation, multiplicative inverses, and division. For example, since

(p,0,0)" = (p",nb,ne) 4)

2Unfortunately, parenthesized triples may refer to both cartesian and spherical coordinates. In
general, the presence of Greek letters such as p, 6, ¢ or m will mean that a particular occurrence
refers to spherical coordinates.




the following definition of multiplication seems natural:

(p1,01,901)(p2, 02, 02) = (p1p2; 01 + 02, ¢1 + $2)

However, this attempt too seemed stuck against a dead end once the proposed
algebra started to show more and more annoying differences from standard
mathematical concepts. For example, properly calculating equation (4) re-
quires a definition of ¢ in the range [—, 7], while spherical coordinates define
elevation in the range [—7/2,7/2]. This in turn means that a cartesian repre-
sentation of this algebra is not power associative’.

Leaving aside for a moment the nice pictures, the fundamental insight that
White had is this: possibly, the essence of the 2D Mandelbrot does not rely
on the complex field—there could be something else more fundamental to the
set’s appearance, and this thing could be rotations.

4 Reconsidering quaternions

Now, rotations are something that mathematicians have learnt to handle very
well. They have two tools of choice to deal with rotations, namely matrices
and... quaternions.

Matrices are an extremely general tool that can represent arbitrary linear
transformations of an arbitrary vector space, including for example those that
do not preserve angles. Any of the three equations in the previous section
could indeed be converted to a 3x3 matrix R, and the resulting iteration would
have this shape:

(pv 0, ¢)n = R(Qv ¢)n(pn7 0, 0)

Even better, the scaling operation could be included in the transformation ma-
trix like this:

(p,0,9)" = R(p,0,¢)"(1,0,0)

under the following conditions:
e R affects areas by a factor of exactly p: det R = p?
e R isa combination of scaling and rotation: R~ = RT /p?

If these two conditions are imposed, however, the transformation is more
compactly represented by a quaternion g. Note that the operation that will be
performed on the quaternion is not q < ¢* + ¢, so this will still result in a Mandel-
bulb rather than the disappointing quaternion Julia sets. Only, the 3-tuples of
Section 2 will be replaced a well-known mathematical object, the quaternion.

Unit quaternions, that is quaternions whose norm is 1, represent the space
of 3D rotations in a simple way. For the purpose of this paper, it will suffice

3In a power associative algebra, (z,y, 2)"T™ = (z,y, 2)" (z, y, )™



to show how to describe a rotation by a quaternion, without explaining the
theory behind this. v will indicate a quaternion with a zero scalar part, that is
ix + jy + kz; the rotation by an angle o around axis v is then represented by
the following quaternion:

1o tvsi Ie%
= COS — V Ssin —
4 2 2

The rotation is clockwise if the observer’s line of sight points in the same
direction as v. A rotation ¢ can be applied to a vector w by computing two
quaternion multiplications, specifically gwq ™.

Rotations can be composed by multiplying two quaternions; ordering is
significant, since quaternion multiplication is noncommutative. ¢" instead is
well defined as a rotation by n times the angle around the same axis as g, since
multiplication is still associative.

These formulas of course work in 2D too; in this case the rotated point will
be of the form iz + jy and, in order to stay in the zy plane, the rotation must be

performed around the z axis:

- a+k «
q—COS2 SlIl2

This is more compactly written ¢*/2. The polar representation of complex

numbers also has an equivalent using quaternions on the zy plane, albeit the
expression is more complicated. Let v = iz + jy be a point on the zy plane,
and (p, ) its polar representation. Then, it’s possible to write v from p and 6 as

follows:
v = peke/zie_ke/2 ®)

From here it is a short step to a somewhat nontraditional formulation of the
Mandelbrot set, based on quaternion rotations. It was already said repeatedly
that v2 corresponds to squaring p and doubling 6. Then, it’s possible to write
the Mandelbrot iteration as follows:

v peklie ™™ 4 ¢ 6)

But this complicated expression can be simplified noticeably. For unit quater-
nions, ¢~! = g: inversion and conjugation are the same operation, and gig~!
can also be written ¢ig. When the modulus is not one, instead, ¢ig = |q|?qig~!.

Therefore we can simplify equation 6 to
VvV« qig+c

where
q=pe’ =z +yk = —vi



Changing the sign of ¢ does not modify the effect of the rotation*, and it slightly
simplifies the iteration. So we can define equivalently ¢ = vi and, generalizing
the exponent n to values other than 2, we get:

v — ¢"%ig"? + ¢, where ¢ = vi. @)

It is easy to show that putting ¢ = v gives the same result®. The elegant iter-
ation that results, v < viV + ¢, can thus be seen as a quaternion formulation of
the Mandelbrot set. However, when drawn in 3D, it results simply in a “lathed”
2D Mandelbrot set. So, for the sake of generalizing to three dimensions (and
rediscovering the Mandelbulb in its quaternion form), we’ll have to take a step
back to equation (7), and see if it can be actually generalized to 3D.

5 Rethinking the Mandelbulb

Since there is no single candidate to the role of 3D Mandelbrot, it makes sense
to define a family of iterations that can be used to produce these fractals. Some
of them will be more interestings and other more boring, but all of them will
share the property of degenerating to a same-order Mandelbrot set on a plane—
for simplicity, the choice will be the zy plane.

Each different fractal will be described by a function Q(v) associating a
quaternion to a position in 3D space v. To satisfy the first condition, the func-
tion should satisfy |Q(v)| = |v|; the second condition can be imposed by check-
ing that

Qiz +jy) = v + ky

whenever the k component of v is zero (alternatively, if v’s spherical coordi-
nates are used, whenever ¢ = 0).

Note that this would exclude equation (3), which indeed has a very dis-
torted appearance for n = 2. Still, under this definition there are infinite pos-
sible definitions of )(v) that make sense and many produce interesting draw-
ings. The main advantage is that the function Q(v) is the same for all expo-
nents: its definition automatically includes the generalization of squaring to
exponentiation. It is also includes possibilities such as adding phase shifts to ¢
or multiplying by arbitrary factors.

Let’s consider for example equation (2) for n = 2. The desired rotation an-
gles are 26 and 2¢, which simplify nicely with the fractional terms 6/2 and ¢/2

4This is true for all quaternions, since quaternions are actually a double cover of the space of
rotations.

SMultiplying on the right by —i corresponds to adding a 180 degree rotation around the z axis,
which is irrelevant because the point being transformed is i and it always lies on that axis. An
interesting point in the resulting formula is that viV is also a quaternion rotation, more precisely a
180 degree rotation around axis v. In 2D this is a reflection, so the result will always lie on the zy
plane.



of equation (5). Q(v) can then be expressed easily in terms of v’s components:

Q(v) = p(cosh + ksin ) (cos ¢ — jsin ¢)
= pcosfcoso+ ipsinfsing — jpcosbsin g + kpsin b cos ¢ (8)

— 3 Yz 3
= x+l\/m2+y2 —_]\/g;iyz +ky

For z = y = 0, the function is not continuous, and any value of ¢ can be used.
The simplest possibilities are Q(v) = —iz or Q(v) = jz.

From this formula it is trivial to verify the condition expressed above for
embedding the Mandelbrot set. It is also possible, if needed, to easily convert
the quaternion ¢ back to (p, 8, ¢):

p=lq|,0 = arctan—Z—z = arctan q—z, ¢ = arctan 9= _ arctan — 2

Y Quw 4z Gw

Unfortunately, the definition of Q(v) proposed so far will match the corre-
sponding Mandelbulb only for n = 2. For higher orders, raising equations (8)
and (5) to n/2 will alternate rotations around the z and y axes, instead of mak-
ing a single rotation around the z axis followed by one around the y axis.

So, instead of using exponentiation as in equation (7), Q(v) has to be gen-
eralized a family of functions Q, (v) satisfying Q, (iz + jy) = (z + ky)”. The
iteration will be defined as follows:

v < gig + ¢, where ¢ = Q. /2(v)
The family of functions corresponding to equation (2) becomes:

Qv (v) = p(cosvl + ksinvh)(cosvep — jsinve)
= pcosvbcosvep + ipsinvlsinveg — jpcosvlsinveg + kpsin vl cos v

This of course degenerates to equation (8) when v = 1. As another example of
defining @), (v), equation (1) can be written as follows:

Qv (v) = p(cos O + ksin ) (cos ¢ + jsin ¢)
= pcosvlhcosve —ipsinvlsinve + jpcosvfsinvg + kpsin v cos v

giving for example
Yz . Xz

VEr R e

6 Expressing triplex algebra using quaternions

Qi(v)=z—1i

+ ky

One important property of the values of equations (8) and following is that
Q(v) takes a different value for each 0 and ¢ in the range (—m, 7). In other



words, unlike when using “triplex numbers”, rotation of the elevation can be
expressed using its full 27 range; you may recall this to be a problem with
triplex numbers, and we can now see why this problem is present.

The limited range of the elevation does not pose any problem in the case of
triplex exponentiation, since it groups together two steps: conversion of from
spherical coordinates to quaternions, and applying the resulting rotation to
i. In Nylander’s multiplication formula however two objects with two dif-
ferent meanings (a rotation and a vector) appear in a commutative way, but
since rotations are “twice as many” as vectors, the rotation cannot be described
exactly. While it happens to suffice in the case of squaring, this does not ex-
tend to higher powers. Therefore, unlike exponentiation and due to its non-
associativity, “triplex multiplication” does not have a geometrical meaning when
expressed in cartesian coordinates. This is also related to the lack of power-
associativity in White and Nylander’s 3-tuples; instead, the quaternion for-
mulation intrinsically avoid the problem by representing rotations and vectors
differently.

For a well behaved @, (v), however, it may be possible to define a compo-
sition operator akin to triplex multiplication while avoiding its pitfalls. Triplex
exponentiation can be defined as the operation that “creates” @, (v) from Q1 (v);
hence, a composition operator o possessing the property

QM(V) 0Qy(v) = Qu+v (v)

will have all the properties of triplex multiplication, plus (by definition) power-
associativity. The definition of o (if it exists at all) of course depends on the
definition of @, (v). We are however concerned only with equation (2), since
this is the only case where a power-associative multiplication operator can be
defined. In this case, the definition of Q.+, (v) can be expanded as follows:

Quin(v) = peos(u + v)0 cos(ju + v)é + ipsin(y + )0sin(u + v)6
—jpcos(p+ v)0sin(u + v)d + kpsin(p + v)6 cos(p + v)d
= pcos(ud + v0) cos(up + vd) + ipsin(pd + v0) sin(ug + ve)
— jpcos(ub + v0) sin(ugp + vo) + kpsin(ub + v0) cos(ud + veo)

Addition formulas can be used to expand the cosines and sines in terms of
Q,(v) and @Q,(v), and the result simplifies to give the desired definition of
pog:

bogqg= (prw +szz _pry _szZ) + i(prz +pZQM - prz _szy)
+3(Pwdy + P2q: + Pydw + P2Gz) + K(Pwz + P2y + Pyde + P2qw)

This is similar to quaternion multiplication, but not exactly. The units of the



quaternion space are composed as follows®:

o | 1 4« 3 k
111 ¢+ g k
il 1 kK j
ili k -1 —i
klk 5 — -1

Unlike Nylander’s triplex multiplication, it is commutative and associative.
Still, if * denotes triplex multiplication, the following identity also holds ap-
proximately:

v+ w ~ gig, where g = Q1 (v) o Q1 (w) ©)

The equality is not exact, because azimuths will differ by 7 radians iff Q;(v) o
Q1(w) includes a rotation around the y axis by more than 7 radians—in this
case, however, the value of the left hand side of equation (9) is effectively
wrong. The corresponding identity for exponentiation instead is exact:

v " v = gig, where ¢ = Q1(v) 0" Q1(v)

which is lucky because computing exponentiation directly on cartesian coordi-
nates is faster than going “to quaternions and back”. However, exact composi-
tion of arbitrary rotations requires the full expressiveness of the o operator or,
equivalently, of a polar representation for triplex numbers.

7 Conclusion

In this paper I proposed to describe the family of Mandelbulb fractals using
quaternions, so that each possible definition of exponentiation can be written
as a functions from a vector to a quaternion. This formulation has several ad-
vantages: it makes it easy to distinguish members which embed the Mandel-
brot fractal, it eliminates the need to define new non-standard algebras, and
it defines White’s operators in a way that preserves associativity and power
associativity.

An alternative method using transformation matrices was also presented
briefly. This method could be more useful for extensions beyond the third di-
mension.

However, this paper barely scratched the surface in terms of analyzing the
properties of the fractals itself. There are many questions that can be analyzed.
For example, what are the boundaries of the set? Or, why do some fractals
have a flat appearance for n = 2?

%0One should resist the temptation to take this table as an alternative definition of quaternions.
This table describes simply the way rotations are composed in one particular kind of Mandelbulb,
and all the other results in the paper rely on “traditional” quaternion rules. For this reason the
operator is denoted by o.

10



Since there may be no true 3D equivalent of the Mandelbrot fractal, having
defined a space of @, (v) functions may at least help steering the search for
new fractal creations of this family. It is my hope that this paper will provide
a tool to analyze their characteristics rigorously and, maybe, will contribute to
the discovery of new beautiful mathematical objects.

11



A Expansion of quaternion formulas
Rotation of i by ¢
qig = i(qs, + @& — q; — 42) +§(2020y + 2quwqz) + K(2¢2q: — 2quwqy)

This is the main step in the computation of the Mandelbulb for n = 2.

Quaternion squaring and multiplication

=g — ¢ —a — @)+ 2quls + 2jquwdy + 2kquq.
pq = (prw — Pzqx — pry - pZQz) + i(pw%c +szw +prZ - pZQy)
+i(Pwy — 2@z + PyGuw + P2qx) + k(Pwaz + P2qy — Pyle + P2quw)

Squaring and multiplication allow to compute an arbitrary power using
the binary exponentiation algorithm.

“Triplex squaring” on quaternions

pop=(ps +ps —ps —p2) +i(2pwps — 2pyp-)
+ 3(2pwpy + 2p2p2) + K(2pwpz + 2p2py)

Using the previous identity, the binary exponentiation algorithm can be
used also to compute @), (v), in particular when v is a power of 2. When v
is integer the exponentiation will start from ()4 (v), i.e. from equation (8),
otherwise from Q1 /5(Vv).
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