3D-image of original Mandelbrot set for \(z(n+1) = z(n)^2 + c \)

Made with Fractal Imaginator (FI) by Terry Gintz and Jules Ruis
Juliusbulb \(z(n+1) = z(n)^2 + c \) (top of Mandelbulb zoomed-in)
Juliusbulb $z(n+1) = z(n)^3 + c$ (top of Mandelbulb zoomed-in)

3D-image of original Julia set (Julia bulb) for $z(n+1) = z(n)^2 + c$ (c=-0.77)
3D-image of original Julia set (Julia bulb) for $z(n+1) = z(n)^2 + c$ ($c=0.25$)
3D image of Juliusbulb set for \(z(n+1) = c \times \sin(z(n)) \)

Made with Fractal Imaginator (FI) by Terry Gintz and Jules Ruis

3D Juliusbulb set for \(z(n+1) = z(n)^7 + c \) for \(c = 0 \)
3D JuliusRuisbulb set for \(z(n+1) = z(n)^8 + c \)

3D Juliabulb set for \(z(n+1) = z(n)^8 + c \) for \(c = -1.1 \)

Real 3D Fractal produced by Shapeways
Real 3D Juliabulb Fractal set for \(z(n+1) = z(n)^8 + c \) for \(c = -1.1 \)

3D Juliabulb set for \(z(n+1) = z(n)^8 + c \) for \(c = -1.1 \)
3D Juliabulb set for $z(n+1) = z(n)^8 + c$ for $c = -1.1$ zoom-1

3D Juliabulb set for $z(n+1) = z(n)^{-8} + c$ for $c = -1$

Sub-objects with fractal dimensions:
from 3-dimensional bulbs to 2-dimensional flat slices

Real produced 3D Juliabulb set for $z(n+1) = z(n)^8 + c$ for $c=-1$

Real 3D Juliabulb set $z(n+1) = z(n)^8 + c$ for $c=-1.1$ (left)

and $z(n+1) = z(n)^{-8} + c$ for $c=-1$ (right)
Fractal gallery

For animations of sliced 3d Mandelbulb/Juliabulbs see You Tube:

http://www.youtube.com/julesruis?gl=GB&hl=en-GB