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Making faultless complex objects from potentially faulty building blocks is a fundamental challenge
in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time
how recursion can be used to address this challenge and demonstrate a recursive procedure that
constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide
and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to
divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized
directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming
error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted
and used as new, typically longer and more accurate, inputs to another iteration of the recursive
construction procedure; the entire process repeats until an error-free target molecule is formed. Our
recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed,
precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and
ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the
design and construction of synthetic biological molecules and organisms.
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Introduction

Making faultless complex objects from potentially faulty
building blocks is a fundamental challenge in computer
engineering (John Von Neumann, 1952), nanotechnology
(Drexler, 1992; Merkle, 1997), and synthetic biology
(Carr et al. 2004; Forster and Church 2006). Complex
mathematical objects such as functions (Rogers, 1967),
fractals (Mandelbrot, 1982), natural and formal languages
(Chomsky, 1964; Hopcroft and Ullman, 1979), and
computer data structures (Aho et al, 1983) are typically
described using recursion. Although the promise of
recursion to physical construction has been recognized
(Merkle, 1997), its application in engineering has been scarce
(Knight, 2003; http://www.sloning.de/). Here, we present a
recursive procedure for constructing faultless DNA
molecules and libraries from faulty short synthetic oligonu-
cleotides.

Long DNA molecules encoding novel genetic elements are in
broad demand (Ryu and Nam, 2000; Tian et al, 2004; Forster
and Church, 2006; Heinemann and Panke, 2006); however,
only short oligonucleotides (o100 nt) are made quickly and
cheaply by machines (Caruthers, 1985). Such oligonucleotides
are used as building blocks to construct longer DNA molecules
using one of two basic construction strategies, namely
polymerase cycling assembly (PCA) of multiple overlapping
synthetic oligonucleotides (Stemmer et al, 1995) and ligation
of synthetic oligonucleotides (Au et al, 1998).

The utility of synthetic DNA constructs in biology depends
on their being free of sequence errors (Carr et al, 2004; Tian
et al, 2004; Forster and Church, 2006), yet the synthetic
oligonucleotides serving as their building blocks are error
prone (about one sequence error per 160 nt) (Tian et al, 2004;
Forster and Church, 2006). Therefore, all DNA construction
protocols struggle with the labor-intensive time-consuming
task of cloning and sequencing synthetic DNA fragments,
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seeking an error-free one. If none is found, a clone with
sufficiently few errors that can be patched without undue effort
using site-directed mutagenesis (Hutchison et al, 1978) is used.

The problem is exacerbated for longer synthetic DNA since
the probability of a molecule, and hence of a clone, to be error
free decreases exponentially with its length. To partially
address this problem, a two-step assembly process is
commonly applied in which 300- to 500-bp fragments are
constructed, cloned, sequence-validated and then assembled
into the desired target molecule (Xiong et al, 2004). Other
methods enrich error-free DNA molecules with the use of
special mismatch-binding proteins (Tian et al, 2004; Forster

and Church, 2006) or improve site-directed mutagenesis
(Xiong et al, 2006) to address this fundamental problem in
de novo DNA construction.

Our procedure for constructing error-free DNA molecules
integrates recursive construction and error correction. It uses
Divide and Conquer (D&C) (Aho et al, 1983; Alsuwaiyel,
1999), the quintessential recursive problem-solving technique,
to construct long DNA molecules from short oligonucleotides
and then to error-correct the resulting molecules, until an
error-free molecule is obtained.

D&C solves a problem (in our case, the construction of a
particular ssDNA molecule) by dividing it in silico into two
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smaller subproblems (in our case, the construction of two
shorter ssDNA molecules, as shown in Figure 1 top); solving
each subproblem recursively, using D&C; and combining
in vitro the solutions to the subproblems into a solution to the
original problem (in our case, combining the two ssDNA
molecules into the desired longer ssDNA molecule, as shown
in Figure 1). If the problem is small enough (in our case, the
ssDNA molecule is short enough), it is not divided further but
is solved directly (in our case, synthesized as an oligo).

Solving problems with D&C is naturally implemented using
recursive procedures.

A fundamental prerequisite of a recursive procedure is that
its output be of the same type as its inputs. Examples of DNA
composition procedures that do not comply with this input–
output compatibility requirement include overlap extension,
which takes two ssDNA fragments that overlap at their 30 as
input and produces the corresponding elongated dsDNA
molecule as output, and PCA, mentioned above, which takes
two or more overlapping DNA molecules as input and
produces a mixture of the input molecules and some elongated
dsDNA molecules as output. Our construction procedure
(shown in Figure 1B and Supplementary Figures 1 and 2) is
thus designed so that it accepts two overlapping ssDNA
molecules as input and produces an elongated ssDNA
molecule as its output (Figure 1B), utilizing three known
enzymatic reactions: overlap extension between ssDNAs, PCR
with 50 phosphate labeling and Lambda exonuclease-mediated
ssDNA generation. It can be applied recursively since its input
and output are of the same type (ssDNA). In principle, a
recursive construction procedure that uses dsDNA as its input
and output can also be devised. We chose ssDNA rather than
dsDNA because the extension of overlapping ssDNA mole-
cules can be performed in quasi-equilibrium (i.e. denaturation
and then very slow cooling to annealing temperature), thereby
greatly improving control, yield and specificity (see Results for
CE fragment analysis of composition reactions) of elongation
products. This is in contrast to the rapid thermal cycling
conditions commonly used when elongating two or more
dsDNA molecules, which often result in low elongation yield
and in nonspecific elongated products (see Supplementary
Figure 3).

The D&C recursive algorithm receives a user-specified target
sequence as its input and returns as output a list of oligos to be

synthesized and a protocol in the form of a robot control
program that can be used to construct the desired DNA
molecule using the specified set of oligos.

The basic recursive subroutine of the algorithm takes as
input the sequence of a target molecule and returns as output a
recursive construction protocol and its associated cost. This
subroutine divides the target sequence into two overlapping
sequences and calls itself recursively with these subtarget
sequences as new input. The cost of constructing the target
molecule by this protocol is computed by adding the cost of
assembling the two overlapping subfragments to the cost of
constructing these two individual subfragments. The com-
puted cost accounts for the various features of the construction
process, including the number and length of oligos, number of
reactions and the total number of levels in the protocol (see
Supplementary information). The recursive division ends if
the subroutine’s target is short enough to be synthesized
directly as an oligonucleotide.

Division points are not chosen so that oligos are of equal
length, as usually practiced in PCA methods (Smith et al,
2003). Instead, division points are selected to minimize the
cost of constructing the target and to respect a set of
constraints, including whether good PCR primers exist for
each of the subtargets and whether the two subtargets can be
elongated together efficiently and specifically in the elongation
reaction described in Figure 1B. Validation of specificity and
affinity of elongation overlaps and PCR primers is performed
using sequence alignment algorithms and Tm calculations,
respectively (see Supplementary information). The optimized
recursive protocol is then transformed into a robot control
program that instructs the robot to construct the molecule
bottom–up. It starts with the leaves of the recursive construc-
tion tree and iteratively executes the basic chemical step
(Figure 1B) all the way up to the root of the tree until the target
molecule is constructed.

The hierarchical structure of our procedure, induced by the
use of recursion, enables DNA construction by pairwise
composition reactions that are performed independently of
each other and in equilibrium, which greatly increases the
predictability (and hence amenability to automation) of the
core biochemical reactions of our procedure. The hierarchical
structure of the recursive construction tree is also at the
foundation of our error correction procedure.

Figure 1 Recursive construction of error-free DNA molecules from error-prone oligonucleotides. (A) Recursive construction of the GFP DNA. The Divide & Conquer
procedure, as applied to the construction of the 768-nt GFP, is illustrated from top to bottom. The target sequence is recursively divided in silico into overlapping
oligonucleotide sequences (16 oligos of average size 75 bp for the synthesis of GFP ). The specified oligos are synthesized by conventional means and serve as inputs
(in blue) for recursive construction, performed in vitro. Construction proceeds by recursively combining pairs of overlapping ssDNA molecules into ever longer ssDNA
molecules, as described in (B) until the target molecule is formed. Target molecules thus produced typically have the same error rate as their source oligos, and hence
are subject to recursive error correction as follows. A certain number of target molecules are cloned and sequenced (this number is optimized as described in the text,
seven in the case of GFP ). Errors (marked in red) are identified. Error-free segments found in the clones are then amplified from the clones and used as inputs to another
recursive reconstruction of the target molecule (one half molecule and two quarter molecules in this case). The error-free segments are chosen to correspond to nodes in
the recursive construction tree, so that they can be amplified using the same primers used in the initial procedure and are further optimized, using the mathematical
notion of minimal cut in a graph (explained in the text) so as to minimize the number of reactions needed for reconstruction (only 2 reactions out of the total of 15 in this
case). This second iteration of the procedure typically (as in this case and all our experiments to date) results in an error-free clone. However, if errors remain another
error-correcting iteration of the procedure can be performed. The figure further demonstrates the construction of a 3-kb DNA fragment by combining, using the same
construction procedure, the synthetically produced GFP molecule and DNA from a natural source as input (bacterial plasmid, in green), which yielded an error-free
molecule. Expected optimal times for each step using state-of-the-art standard equipment are shown on the left. The cloning step could potentially be replaced by single
molecule PCR. (B) The core step of recursive construction receives two overlapping ssDNA molecules as inputs and produces the elongated ssDNA molecule as output,
as follows: the overlapping ssDNA molecules hybridize and prime each other for an overlap extension elongation reaction to form a dsDNA molecule (elongation), which
is then amplified by PCR with one of the two primers phosphorylated at its 50 end (PCR with phosphorylated primers). The phosphate-labeled PCR strand is then
degraded with Lambda exonuclease, yielding an elongated ssDNA molecule as output (Lambda exonuclease).

Recursive construction of perfect DNA molecules
G Linshiz et al

& 2008 EMBO and Nature Publishing Group Molecular Systems Biology 2008 3



The molecules produced by the first iteration of our
recursive construction procedure are error prone (see Supple-
mentary Table 1) and have the same error rate as the oligos
used to produce them. Our recursive construction procedure
enables a novel error-correction strategy that employs the very
same construction methodology and reagents to produce
error-free molecules. Like previous DNA construction proto-

cols (Tian et al, 2004), our error-correction procedure uses
cloning and sequencing to identify faults, but unlike previous
protocols it does not require additional or external methods or
reagents to turn the error-prone DNA into error-free DNA. The
overall strategy is described in Figure 1: short oligos are used
as error-prone basic components and composed as described
above till the target DNA molecule is constructed. However,
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Figure 2 Recursive construction and error correction of a simple combinatorial library. The recursive construction of six p53 variants is illustrated top to bottom:
a diagram describes the shared (A, C, E in gray) and unique (B, D, colored) components of the target p53 combinatorial DNA library. A library construction protocol
is computed, where target library sequences are recursively divided into shared and unique components and then further divided into basic oligonucleotide sequences,
which are then synthesized conventionally. Gray oligos are shared by all library variants, and colored segments are used by variants with the corresponding colors.
Oligos are recursively combined in vitro as shown to form the six target p53 variants. These variants were cloned and sequenced, and errors were identified (marked in
red on top of clones). An error-free minimal cut (the non-faded part of the graph below the minimal cut black line) of the library construction graph was computed from only
four error-prone clones (variants 1, 3, 5 and 6). Error-free segments out of these clones (delimited) were used as inputs for another iteration of the recursive
reconstruction protocol, this time producing error-free clones of all six target library members. Expected execution times for each step using standard equipment are
shown on the left.
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unlike other methods, if no error-free molecules are found by
cloning and sequencing, then error-free parts of the erroneous
target DNA molecules are identified and used as new, typically
longer, inputs to the same recursive construction procedure.
Since this construction starts from typically larger DNA-
building blocks that are error free, the number of errors in
the resulting reconstructed DNA is expected to decrease,
possibly down to zero, eschewing additional screening of
clones.

Specifically, the error-prone clones from the initial con-
struction are analyzed to find a minimal cut in the recursive
construction tree, defined as follows (see also mathematical
definitions in Supplementary information). A node in the tree
is said to be covered by a set of clones if its sequence occurs
error free in at least one of the clones. A set of clones induce a
minimal cut on the tree, defined to be the set of the most
shallow (closest to the root) nodes in the tree that are covered
by the clones. If some leaf is not covered it means that the oligo
is erroneous in all clones. In such a case, we can either analyze
additional clones in the hope to find that leaf error free and
re-compute the minimal cut or, if we reason that a systematic
error has occurred in the synthesis of an oligo (i.e. the same
error is represented uniformly in all clones), then there is no
reason to analyze additional clones and we simply re-
synthesize that oligo and try again. Mathematically, we simply
assume that the newly ordered oligo would cover the leaf node
and proceed with the computation of the minimal cut. Since
the boundaries of the error-free DNA fragments that constitute
the minimal cut coincide with boundaries of fragments of the
initial recursive construction tree they can be extracted from
their respective clones using PCR and the same primers used in
their corresponding composition step (Figure 1B). As a result,
no additional methods or reagents are needed to obtain error-
free molecules beyond those used in the initial construction.

Moreover, based on the known rate and distribution of
errors we can predict the number of times error-free
components will occur in a given number of constructed
objects. Furthermore, we can calculate the probability that a
certain number of error-free components would collectively
span the entire target object. Conversely (and more impor-
tantly), we can calculate the number of object copies (clones)
required so that their error-free components span the entire
target object with a desired probability (chosen to be 95% in
this work, see Supplementary information).

Indeed, in all our experiments, a single re-application of the
recursive construction procedure, using as input error-free
components copied using PCR from molecules produced
during the first application of the procedure, yielded error-
free synthetic DNA molecules out of almost every clone.

Results and discussion

We constructed the gene for GFP using the process shown in
Figure 1. The construction-protocol-generating algorithm
(Figure 1, top and Supplementary information) recursively
divided the target sequence into basic overlapping oligos
according to multiple criteria (see Supplementary informa-
tion) using D&C (Aho et al, 1983; Sloning, BioTechnology
GmbH, 2006) (Figure 1 top). The oligos were ordered from a

commercial provider (see Supplementary information) with
standard desalting. The algorithm also generated a liquid-
handling robot control program, using a robot programming
language developed by one of us (see http://www.weizmann.
ac.il/udi/papers/rpl.pdf for detailed description) that con-
trolled the execution of the construction protocol by the robot
using only off-the-shelf reagents (as shown in Figure 1). While
the protocol can be executed fully automatically using
standard commercially available reagents and robotic periph-
eral equipment, in the protocols used for the construction of
GFP and in the other constructions reported here some
procedures specified by the robot program were performed
manually (see Supplementary information) due to lack of the
relevant robotic peripheral equipment (robotic centrifuge for
plates). This resulted in construction times longer than those
specified in the fully automated timeline accompanying
Figures 1 and 2. We also integrated automated quality control
monitoring at all stages of the recursive construction and error-
correction procedure including capillary electrophoresis frag-
ment analysis of all fragments that occur during construction
to a single base-pair resolution, gel electrophoresis, real-time
PCR and DNA sequencing (see Supplementary figures for all
these controls). The robot control program instructed the robot
to recursively construct the GFP DNA molecule. DNA
molecules produced from the first iteration of the automated
recursive construction process described in Figure 1 (and
Supplementary Figure 4) were cloned, sequenced and their
errors reflected an error rate ofB1/160, as expected, reflecting
the error rate of unpurified desalted synthetic oligonucleotides
(Hecker and Rill, 1998; Tian et al, 2004). Given that errors are
distributed randomly and with a known rate, we computed the
minimal number of clones required to obtain an error-free
minimal cut with a maximum depth four (Supplementary
information). Practically, this means that we could expect to be
able to ‘lift’ from these clones error-free molecules that can be
used as input for re-application of the recursive construction
procedure, but this time with a recursive construction tree of
depth at most four.

The actual minimal cut of depth two for the GFP sequence,
shown in Figure 1, was computed using three clones (see also
Supplementary information). The error-free fragments con-
stituting this minimal cut were used as input for a re-
application of the recursive construction procedure (see
Supplementary Figure 5), which resulted in an error-free
clone. From the clones produced in the first iteration, we could
have computed a minimal cut of depth one using only a pair of
clones for reconstruction (see Supplementary Figure 6), one
for each half of the target molecule. Instead, we chose to show
a minimal cut consisting of three clones, one contributing
about a half and two contributing about a quarter each of the
target molecule, for illustrative purpose. The clones produced
in the corrective construction show an error rate of o1/5000,
reflecting a 430-fold decrease in error rate compared to the
starting material and approaches the error rate of the DNA
polymerase used in the construction process. This might be
further improved in the future by using polymerases with
higher fidelity. The entire process of automated de novo
construction and error correction of the GFP molecule
according to our method was repeated by an external student.
Capillary fragment analysis and gel electrophoresis of each
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step in the construction and reconstruction process repro-
duced our results. Sequencing results also reproduced our
results with respect to construction and reconstruction
robustness and error rates, resulting in similar construction
times and minimal cuts.

If any fragment of the target sequence is already available as
existing DNA (say in a plasmid or in previously constructed
DNA), the algorithm can take this information into account
and use these fragments as input to the construction process
instead of synthesizing it from basic oligos (Figure 1). To
illustrate this and that recursive construction can also be used
to construct longer fragments, we recursively constructed a
3 kb-long molecule by composing the previously constructed
synthetic GFP molecule with two more sequences present on a
plasmid, 700 nt and 1700 nt long (Figure 1 and see Supple-
mentary Figures 7 and 8). This was executed using the same
principles used for constructing shorter sequences only this
time using the synthetic GFP molecule and a plasmid as input
instead of synthetic oligos.

To further test the robustness of our protocol, we used it to
recursively construct the Escherichia coli codon usage opti-
mized 823-bp-long TachylectinII gene. Low complexity genes,
like the TachylectinII (which utilizes a minimal set of codons
(20) and consists of five nearly identical subunit repeats), pose
a potential challenge to DNA synthesis methods that perform
elongation reactions during construction (Tian et al, 2004).
This is due to its repetitive sequence elements which, if
positioned at the 30 of oligos or any other fragment that occurs
in the recursive construction tree (and therefore in real
construction), may lead to miss-priming and to subsequent
formation of nonspecific products. Since our method is
hierarchical we can spot the elements that are repetitive and
separate them into different reactions. Also, our algorithm
designs the oligos and all other fragments that occur in the
recursive construction tree to have unique 30 termini that
promote specific elongation reactions. This is crucial condition
full automation, which is hindered by nonspecific products.
We were able to recursively construct the low complexity
TachylectinII gene in a single automated application of the
recursive construction procedure (see Supplementary Figures
9 and 10 for detailed account of results). A visualization of the
fragments that occurred in the recursive construction tree is
presented on top of a dot plot revealing the repetitive elements
in the TachylectinII gene (see Supplementary Figure 11).
It shows how our algorithm breaks down the DNA sequence
into fragments that minimize miss-priming during construc-
tion by positioning the repetitive elements away from parts
that can lead to miss-priming (i.e. 30 termini of fragments that
occur in the recursive construction tree). The sequences of all
oligos, primers, construction intermediates and full lengths
reported in this work are available online (see Supplementary
information).

The basic principles used to construct DNA molecules can
also be applied to construct DNA libraries. DNA libraries are
an important source for selecting molecules encoding novel
genetic sequences for use in medicine, research and industry
(Heinemann and Panke, 2006). Numerous methods for
constructing large DNA libraries, mostly by random recombin-
ing (Coco et al, 2001) and mutagenesis (Cadwell and Joyce,
1992) have been developed for directed evolution (Matsuura

and Yomo, 2006). On the other hand, in the computation-
intensive practice of rational design and study of polymers
only a small number of specified constructs, typically
generated by site-directed mutagenesis (Caruthers, 1985) are
investigated experimentally (Cedrone et al, 2000). Recursive
construction can be extended to produce error-free combina-
torial DNA libraries with pre-specified and/or randomized
members. Most construction methods deliver combinatorial
libraries in ‘one pot’, which poses a limitation on the methods
that can be used for their screening. Our library construction
protocol can deliver each library member separately, say in a
separate well of a plate, which may facilitate a richer set of
screening methods. In addition, the starting material for the
libraries can be either natural or synthetic DNA. We
demonstrate the feasibility of building user-specified combi-
natorial DNA libraries by constructing a small library contain-
ing six variants of the p53 gene, specified in Figure 2. The
mutants of the library were user-specified (i.e. site-directed)
and were chosen arbitrarily, to demonstrate the creation of
libraries of mutants with our method. First, target library DNA
sequences are analyzed in silico identifying segments that are
unique and shared between library members, so that shared
segments are only produced once and not separately for each
variant. These segments are further divided into overlapping
oligos. The recursive division algorithm searches for an
optimal library construction protocol based on chemical
constraints and a cost function, to minimize the number of
components and reactions needed to construct the entire
library (Supplementary information). All six different p53
genes were recursively constructed in an automated manner
from basic unpurified oligos (Figure 2 top and Supplementary
Figure 12), and the resulting molecules were cloned and
sequenced (Figure 2 center). In this application of library
construction, our error-correction method becomes even more
efficient since we only need to find one error-corrected
instance of fragments that are shared between several library
members. An error-free minimal cut of the entire library was
computed in this way from only four clones, and a corrective
construction process using the specified error-free fragments
from these four clones produced error-free clones of all six full-
length library members (Supplementary Figure 13), as
predicted (see Supplementary information). The error rate
of the uncorrected clones was, as in previous constructions,
1/160, and a total of 1000 nt of error-free fragments taken from
these four faulty clones were sufficient to generate (in one
error-correcting procedure) a complete library of six members
which contain together more than 5200 nt error-free nucleo-
tides (see Supplementary Figure 14).

The clones produced from the corrective construction show
an error rate better than 1/5700, computed over 86 000 nt of
sequenced clones (see Supplementary Table 1). Moreover, in
the future error correction of larger libraries can be further
economized. For example, in the construction of a library with
256 members (Figure 3B top), a subset of only four clones
containing all library components (Figure 3B bottom) should
be initially constructed and error corrected. Only then, should
all 256 members of the library be constructed from these four
error-free corrected clones. In hindsight, we could have used
the same principle to the p53 library and could have
reconstructed it from only three clones instead of four. This
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principle, of first constructing and error correcting a minimal
kernel from which the entire library can later on be generated,
improves on the efficiency of our error correction for libraries
compared to error correction for single sequences (shown in
Figure 3A). By applying the principles outlined above, we are
currently constructing larger pre-specified DNA libraries and
believe this may become a routine molecular biology
procedure in the future.

A major outcome of our work is that it provides a platform
with which combinatorial libraries can be constructed where
each library member is provided separately (e.g. in a separate
plate well). This would allow screening each library member
independently and, once a successful member is found its
sequence can be known immediately. Naturally, some parts of
any library member can be randomized, as in standard
combinatorial libraries. In this case, we would not need to
apply error correction to the randomized positions since they
are designed to be variable.

Complex human-made objects are usually constructed
hierarchically: buildings (floor, apartment, room, wall, brick),
airplanes (body, wing, flap, screw) and of course computers.
Hierarchical construction requires a different procedure at
each level: the procedure for assembling an engine is different
from that for assembling a flap, and both are different from the
procedure for assembling a wing. This is necessary since the
input objects (e.g. engine, flap) and the output objects
(assembled wing) of each hierarchical construction procedure
are of a different type. In contrast, in a recursive procedure in

general, and in a recursive construction procedure in
particular, the inputs and outputs are of the same type. The
immediately apparent benefit of recursive construction is that
the same procedure is used at all levels of the hierarchy, which
makes the entire process efficient and scalable. A less apparent
benefit is the ability to employ our error-correcting procedure,
which seeks error-free subcomponents in previously con-
structed objects and reuses them in another recursive
construction attempt. The uniformity of recursive construction
enables mixing such subcomponents from various levels of the
hierarchy without any difficulty.

In vitro pairwise composition, as reported here, compared to
‘one-pot’ PCA of multiple overlapping DNA fragments, enables
finer control over reaction conditions and the interactions
between the DNA-building blocks, thus reducing the formation
of by-products. On the other hand, pairwise construction
requires a larger number of reactions than one-pot assembly.
Therefore, up to a certain length (of B500 bp) one-pot
assembly may sometimes, but not always, be less expensive
and/or time consuming. However, whether PCA would work
or not cannot be reliably predicted, and unpredictable failures
often hinder the assembly process. Furthermore, in one-pot
construction of fragments longer than B500 bp, traditional
PCA methods often suffer from faulty construction attempts
and the need to separate correct from incorrect products. Such
separation is typically done by extracting accurately sized
fragments out of a gel, hindering automation. In addition,
predicting by computational methods the potential interac-
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Figure 3 Comparative analysis of error-correction methodologies. (A) Error correction of a single molecule. The required number of clones that have to be sequenced
to obtain an error-free synthetic DNA molecule as a function of its length is shown for different methods of construction: naı̈ve construction from synthetic oligos with no
error correction (blue); construction from gel-purified oligos (green); a two-step DNA construction, where in the first step molecules of length 500 are constructed, cloned,
sequenced, and in the second step these error-free molecules are used as building blocks for larger molecules (red); a two-step construction from oligos purified
by hybridization (Tian et al, 2004) (cyan); and recursive construction with iterative error correction (purple) (see Supplementary information for mathematical analysis).
(B) Error correction of libraries: a graph representing a DNA library with four variable sites, each containing four variants, totaling 256 possible library members (top).
Using recursive construction one can first construct and error correct a representative set of only four library members, which constitute a minimal cut through the
construction graph of the entire library. A subsequent iteration of the protocol can use error-free fragments obtained from these four library members to efficiently
construct the entire 256-strong library. This dramatically economizes the error correction of libraries compared to the correction of each library member separately, as
presented in (A).
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tions between reaction components is easier for
pairwise reactions, as in the recursive composition
procedure, than in reactions with multiple components such
as PCA.

Regarding the error rate of the synthetic oligo-building
blocks, we have taken into consideration the nonlinear
relationship between oligo length and mutation rate. None-
theless, we have chosen to optimize for longer construction
oligos since shorter oligos come with the cost of performing
more reactions, the cost of which is integrated into our cost
function. The reduction in error rate due to shortening of
oligos is small (B2-fold) compared to the reduction achieved
with our directed error correction (B30-fold); therefore, the
saving in the number of reactions due to longer oligos is cost
effective. More importantly, our method incurs only a small
addition in cost due to the higher error rate in longer oligos
compared to shorter ones, since the number of clones we need
to construct an error-free molecule increases only linearly with
the error rate of the oligos, and not exponentially as in other
methods, see Figure 3A.

An important feature of our error-correction procedure is
that it bypasses a major obstacle in constructing synthetic
DNA, namely the exponential decrease in the fraction of
error-free molecules with the length of the molecule, as seen in
naı̈ve approaches to DNA synthesis (Figure 3A, blue
plot). This is possible since our error-correction procedure
avoids the difficult task of finding complete error-free
molecules. Instead, it efficiently utilizes small error-free parts
and combines them back into an error-free target molecule.
The probability of finding an error-free fragment of a fixed
small size is high and (more importantly) fixed regardless of
the overall length of the target molecule. Hence the small linear
increase in the number of clones needed to construct
increasingly larger error-free target molecules (Figure 3A,
purple plot) compared to the exponential increase in the
number of clones needed when constructing DNA without any
error correction (Figure 3A, blue plot). Even if some sort of
building block (oligo) purification is applied, e.g. PAGE
purification (Figure 3A, green plot), the number of clones still
becomes overwhelming in the construction of DNA several
kilobase pairs long.

Other methods for DNA synthesis also employ a hierarchical
strategy in construction and error correction. For example,
fragments of B500 bp are constructed by PCA, cloned and
screened for error-free molecules, which are then combined
into larger fragments by different methodologies (Xiong et al,
2004). Such a two-step construction strategy is compared to
ours in Figure 3A (red plot). Although we are not aware
of evidence that PCA works with automation level robustness
at B500 bp, for this plot we assumed it does and that cloning
of PCA products occur uniformly at this length. The purifica-
tion of initial building blocks by PAGE (Figure 3A, green plot)
or even an improved building block purification technology
(Tian et al, 2004) combined with a two-step assembly process
(Figure 3A, cyan plot) still do not avoid the large number of
molecules that need to be screened to construct molecules
several kilobase pairs long.

Other error-correction methods not presented in Figure 3A
include those which enrich error-free DNA molecules with the
use of special mismatch binding or cleaving proteins (Carr

et al, 2004; Forster and Church, 2006; Bang and Church, 2008)
or improve site-directed mutagenesis (Xiong et al, 2006). The
former requires the use of special mismatch-binding proteins
and is limited to relatively short fragments with only a few
errors. The latter performs corrective PCR with corrective
primers for each error, which requires both the retrospective
synthesis of new PCR primers for each such error and that the
newly corrected PCR fragments be combined back into the
target sequence. The fact that the identity of the new PCR
fragments and the resulting structure of the construction
protocol are dictated by the random distribution of errors and
not by engineering considerations impairs robustness and
hence amenability to automation. This is also why we do not
choose any error-free fragments from our clones or design new
primers which span them, but only the ones that coincide with
fragments from our construction plan.

We cannot provide actual dollar costs of executing the
protocol at this stage, however, a framework for designing and
selecting construction protocols that minimize the cost of the
process (as described in the paper and in Supplementary
information) has been established. In general, the major costs
that require reduction in DNA synthesis are the costs
associated with (the typically manual labor intensive)
production of clones and the cost of sequencing their DNA.
The magnitude of these tasks is dramatically reduced using our
method, as shown in Figure 3.

We have demonstrated recursive construction and
error correction of DNA several kilobase pairs long, accounting
for most genes, on producing longer molecules using our
methods is a subject of current work. We expect to be able to
use our method up to the limit of long-range PCR (about
20–30 kb). Going beyond that limit would probably require
shifting from the in vitro system reported here to in vivo
systems capable of copying and maintaining DNA fragments of
this length.

Recursive construction improves on previous approaches to
DNA synthesis (Stemmer et al, 1995; Au et al, 1998; Gao et al,
2003; Smith et al, 2003; Tian et al, 2004; Xiong et al, 2004) by
enabling rapid, fully automated construction of long error-free
synthetic DNA molecules. It performs construction in vitro and
therefore requires no in vivo selection steps inherent to some
methods (Knight, 2003; Kodumal et al, 2004) and has no
constraints regarding avoidance or inclusion of restriction
sites; it reduces the error rate B30-fold compared to
construction from standard oligos (see Supplementary Table 1)
and dramatically decreases the number of clones that have to
be sequenced to make an error-free molecule (Figure 3); it
easily combines synthetic and natural DNA fragments; and it
enables efficient design and accurate synthesis of exactly pre-
specified combinatorial DNA libraries with shared and
variable components.

We demonstrated recursive construction and error correc-
tion of long DNA molecules and libraries employing standard
available technology. Additionally, our recursive construction
and error-correction method can take full advantage of other
improvements in biochemical methods for DNA error correc-
tion (Carr et al, 2004), of advances in oligo synthesis, including
synthesis on a chip (Tian et al, 2004) and of improvements in
liquid handling such as microfluidic ‘lab on a chip’ technology
(Whitesides, 2006).
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Materials and methods
The core recursive construction step (Figure 1B) requires four basic
enzymatic reactions: phosphorylation, elongation, PCR and Lambda
exonucleation. They are described in the order of execution by our
protocol:

Phosphorylation of all PCR primers used by the
recursive construction protocol is performed
beforehand simultaneously, according to the
following protocol

50 DNA termini (300 pmol) in a 50ml reaction containing 70 mM Tris–
HCl, 10 mM MgCl2, 7 mM dithiothreitol, pH 7.6 at 371C, 1 mM ATP,
10 U T4 polynucleotide kinase (NEB). Incubation is at 371C for 30 min
and inactivation is at 651C for 20 min.

Overlap extension elongation between two ssDNA
fragments

50 DNA termini (1–5 pmol) of each progenitor in a reaction containing
25 mM TAPS pH 9.3. at 251C, 2 mM MgCl2, 50 mM KCl, 1 mM
b-mercaptoethanol, 200mM each of dNTP, 4 U Thermo-Start DNA
Polymerase (ABgene). Thermal cycling program is as follows: enzyme
activation at 951C for 15 min, slow annealing at 0.11C/s from 95 to
621C, elongation at 721C for 10 min.

PCR amplification of the above elongation product
with two primers, one of which is phosphorylated

Template (1–0.1 fmol), 10 pmol of each primer in a 25ml reaction
containing 25 mM TAPS pH 9.3 at 251C, 2 mM MgCl2, 50 mM KCl,
1 mM b-mercaptoethanol 200mM each of dNTP, 1.9 U AccuSure DNA
Polymerase (BioLINE). Thermal Cycler program is: enzyme activation
at 951C for 10 min, denaturation at 951C, annealing at Tm of primers,
extension at 721C for 1.5 min per kb to be amplified 20 cycles.

Lambda exonuclease digestion of the above PCR
product to re-generate ssDNA

50 Phosphorylated DNA termini (1–5 pmol) in a reaction containing
25 mM TAPS pH 9.3 at 251C, 2 mM MgCl2, 50 mM KCl, 1 mM
b-mercaptoethanol, 5 mM 1,4-dithiothreitol, 5 U Lambda Exonuclease
(Epicentre). Thermal Cycler program is: 371C for 15 min, 421C for
2 min and enzyme inactivation at 701C for 10 min.

Chemical oligonucleotide synthesis

Oligonucleotides for all experiments were ordered by commercial
providers (Sigma Genosys and IDT) with standard desalting.

Automated DNA purification

Automated DNA purification was performed with Qiagen’s QIAquik
96-well PCR purification kit using standard protocols adapted to work
with Tecan Freedom 200 and a vacuum manifold.

Preparation of reactions

The preparation of all construction reactions listed above including QC
sampling for capillary and gel electrophoresis were done automatically
by a Tecan Freedom 200 liquid handling robot controlled with in-house
developed software.

Protocol automation

Parts of protocol that were executed automatically were performed by
a Tecan Freedom 200 robot mounted with a Biometra T-Robot PCR
block controlled with in-house developed software. Some parts were
not performed robotically due to lack of automation-related equipment
in our lab. Some DNA purifications were done manually using a
tabletop microcentrifuge due to the lack of an automated plate
centrifuge in our lab. Transfer of capillary electrophoresis and RT–PCR
plates from the robot to their slots in the corresponding machinery was
also done manually due to lack of a robotic arm that does so in our lab.

DNA purification

Manual DNA purification was performed with Qiagen’s MinElute PCR
purification kit using standard procedures.

Cloning

Fragments were cloned into the pGEM T easy Vector System1 from
Promega. Vectors containing cloned fragments were transformed into
JM109 competent cells from Promega1 and sequenced.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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