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Grammatical
evolution to
design fractal
curves with a
given dimension
Lindenmayer grammars have frequently been applied to
represent fractal curves. In this work, the ideas behind
grammar evolution are used to automatically generate and
evolve Lindenmayer grammars which represent fractal curves
with a fractal dimension that approximates a predefined
required value. For many dimensions, this is a nontrivial task
to be performed manually. The procedure we propose closely
parallels biological evolution because it acts through three
different levels: a genotype (a vector of integers), a protein-
like intermediate level (the Lindenmayer grammar), and a
phenotype (the fractal curve). Variation acts at the genotype
level, while selection is performed at the phenotype level
(by comparing the dimensions of the fractal curves to the
desired value).

Introduction

Fractals
Some interesting geometrical questions were proposed and
discussed during the last years of the 19th century. In
1890, Giuseppe Peano defined a curve that solved the
following problem: Is it possible for a curve to fill a square?
Several sets that were as odd as this curve and seemed
to be unclassifiable “monsters” were formally studied.

As a consequence of these works, the concept of classic
dimension was revisited. In 1919, the mathematician H.
Hausdorff proposed a new definition of dimension to be
applied in order to distinguish these dubious cases from
typical lines and surfaces. According to his definition,
further refined by A. S. Besicovitch, monstrous curves may
have a fractional dimension that to some extent measures
the ratio between how much the curve grows in length and
how much it advances.

In 1975 B. B. Mandelbrot [1] coined the term fractal to
describe a heterogeneous class of sets that share some
(though not necessarily all) curious properties, such as
self-similarity (the same shapes are found at different
levels with different scales all over the set), underivability
at every point, and infinite length covered in a finite space.

All of these sets have a fractional Hausdorff–Besicovitch
dimension (see [1], Chapter 39).

There are three main classes of fractal sets. Some
appear as the boundary between convergence and
divergence of certain recursive mathematical functions in
the complex domain; others are generated by means of
random Brownian movements; and the third class includes
those curves obtained when a recursive transformation
(iterator) is applied to an initial shape (initiator). The
Peano monstrous curve is in the latter group.

Fractals have been used for hundreds of applications
in fields such as physics, chemistry, astronomy, geology,
image compression, psychology, economics, and medical
imaging. Many natural phenomena are better described
using a fractional dimension, and fractals are thus used
as descriptive models for the growth of plants, particle
aggregation, river cartography, realistic images, and similar
phenomena. Their fractal dimension characterizes most of
these fractal models.

In physical systems, the fractal dimension reflects some
properties of the system [2]. The physical characteristics of
some bodies are related to the fractal dimension of their
surfaces. For example, the growth pattern of bacteria has
a fractal dimension of 1.7, and the fractal dimension of
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clouds is 1.30 to 1.33; for snowflakes it is 1.7, for coastlines
in South Africa or Britain, 1.05 to 1.25, and for woody
plants and trees, 1.28 to 1.90 [3].

In medicine, fractal dimensions have been found for
various biomolecules such as DNA and proteins. For
instance, the fractal dimension of lysozyme (egg-white) is
1.614; for hemoglobin it is 1.583, and for myoglobin 1.728
[4]. The fractal dimension of the perimeter of surface cell
sections has been used to distinguish healthy cells from
cancerous cells [5]. In analytical chemistry, the fractal
dimension is used as a tool to characterize chemical
patterns and problems of sample homogeneity [6]. A given
fractal dimension makes it possible to simulate a variety
of systems: fluid extraction or contaminant mitigation
techniques [2], the hybrid orbital model of proteins [7], or
the growth of conflict rate in aircraft flight schedules [8].

Antennae are electromagnetic devices designed to
radiate or capture signals. Some of their characteristics
are gain, bandwidth, return loss, and resonant frequencies.
In the last years, fractal geometry has provided a new
approach to traditional methods of antenna design [9].
Several classical fractals of the initiator–iterator kind (for
example, Von Koch’s snowflake, Sierpinski’s gasket) have
been proposed as antenna prototypes. Certain properties
of fractal antennae are related to their fractal dimension:
An increase in the fractal dimension may be translated
into higher gain, low return loss, and a shifting down of
the resonant frequencies. In this paper we describe an
algorithm that builds initiator–iterator fractals with a given
fractal dimension, and thus could be an interesting tool in
the design, analysis, or simulation of fractal antennae.

Lindenmayer grammars
In 1968, Aristid Lindenmayer [10] defined a new class of
grammars [11] (Lindenmayer systems or grammars, or,
in short, L systems), similar to Chomsky grammars. Both
kinds of grammars handle an initial string of symbols (the
axiom) and include a set of production rules that may be
applied to the symbols to generate new strings, but they
differ in the way in which production rules are applied.
Chomsky grammars change a symbol at a time sequentially,
while Lindenmayer grammars apply many rules at the
same time in parallel.

Let us look at an example of an L system. If we have
the rules

A��B

and

B��AB,

and we start at the word A, we obtain the following
successive derivations:

A3 B3 AB3 BAB3 ABBAB3 BABABBAB . . . .

This basic scheme is called a D0L system (a
deterministic, context-free L system). There are different
kinds of L systems that extend this scheme in different
ways, but they are not the subject of this work. D0L
systems have been applied successfully to simulate
different biological processes and to represent complex
systems such as fractal curves [12–14], cellular automata
[15], and others [16, 17].

Fractal representation by means of Lindenmayer
grammars
Lindenmayer grammars provide a powerful tool to
represent fractals of the recursive transformation type,
such as the Peano monstrous curve. The recursive
transformation may easily be represented by means of
a production rule, the initial shape by the axiom of the
L system. The fractal curve is obtained from the series
of words derived from the axiom by applying a graphic
representation scheme. One of two main schemes is
usually applied: vector graphics (associating a fixed vector
displacement with each symbol in the L-system alphabet),
or turtle graphics, in which the letters are interpreted
as the movements in the graphic space of an invisible
“turtle” that remembers its current position and preceding
direction. We have proved [14] that the two schemes
are equivalent for an interesting set of fractal curves.

As an example, let us consider the D0L system defined
by axiom F��F��F and the following set of rules:

F��F � F��F � F,

����,

and

����.

The first derivation obtained from the axiom is

F��F��F3 F � F��F � F��F � F��F

�F��F�F��F�F.

With subsequent derivations, we obtain successive
approximations to a well-known fractal curve, Von Koch’s
snowflake curve, one of the first fractal curves in the
history of mathematics. The curve may be drawn by
applying to the derived strings the following turtle
graphics interpretation:

● F moves the turtle one step forward in its current
direction.

● � increases by 60� the current angle of the turtle
direction.

● � decreases by 60� the current angle of the turtle
direction.
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Figure 1 shows the graphical representation of the fifth
derivation in the preceding L system.

Determination of fractal dimensions from equivalent
L systems
In previous works [18, 19], we have described an algorithm
that estimates the fractal dimension of a nontrivial subset
of fractals of the recursive transformation type by means
of the equivalent L system. The dimension is easily
determined by means of symbol manipulation without
using graphical procedures. For example, if our algorithm
is applied to the L system representing Von Koch’s
snowflake, the fractal dimension obtained is
1.2618595071429. . . , its Hausdorff–Besicovitch dimension.
With this algorithm, we can choose to take into account
the fact that the curve generated by the L system may
overlap itself, which, depending on the definition used,
would change the actual dimension computed. However,
this increases the time required to compute the
dimensions, and we have decided not to consider possible
overlapping in the experiments described in this paper. A
consideration of overlapping would not have much effect
on the results described here, except by the corresponding
increase in execution time and/or numbers of generations
needed to reach the target.

Generating fractal curves of a given dimension can be
done by means of deterministic techniques. Several tools
use some measure of the regularity of continuous real
functions with a single real variable. The Hölder exponent
is one of them [20]. In [21], three different methods are
described to build a function that interpolates a set of
points with a prescribed local regularity measured by the
Hölder exponent: by means of the Schauder basis [22],
using Weierstrass-type functions, and by a generalization
of iterated function systems (IFS).

Our method works nondeterministically on a formal
representation of the target system, rather than the real
curve. This approach seems more flexible and general,
because formal models as Lindenmayer grammars are
powerful enough to simulate a wide range of different
complex systems. We hope that our technique is also
applicable to other domains that can be described in
this way.

Grammatical evolution
Grammatical evolution [23–30] is a grammar-based,
linear genome system. It has been applied to automatic
programming to automatically generate programs or
expressions in a given language that solve a particular
problem. Programming languages can usually be
represented by context-free Chomsky languages. In
grammatical evolution, the Backus Naur Form (BNF)
specification of a language is used to describe the output
produced by the system (a compilable code fragment).

Different BNF grammars can be used to produce code
automatically in any language.

In grammatical evolution, the genotype is a string
of eight-bit binary numbers generated at random
and treated as integer values from 0 to 255. The
phenotype is a running computer program generated
by a genotype–phenotype mapping process. The mapping
benefits from genetic code degeneracy; i.e., different
integers in the genotype generate the same phenotype.
According to Kimura’s neutral theory [31], genetic code
degeneracy maintains genotype diversity and enforces the
preservation of valid phenotypes from run to run of the
genetic engine.

When the string of integers in the genotype is exhausted
before the phenotype has been completely generated, a
biologically inspired wrapping mechanism, similar to
the gene-overlapping phenomenon observed in many
organisms in nature, is employed to reuse the integers.
The genotype–phenotype mapping in grammatical
evolution is deterministic—i.e., each individual is always
mapped to the same phenotype. Two mechanisms are used
to minimize the number of invalid individuals in each
generation: punishing them with poor fitness values, or
using a steady-state replacement method [29]. The latter
method seems to improve the performance of the
algorithm greatly.

In grammatical evolution, standard genetic algorithms
are applied to the different genotypes in a population
using the typical crossover and mutation operators. For
each domain, one must design the proper fitness function
that will be used by the genetic algorithm to perform
selection. This technique has been successfully applied
to the automatic programming of problems in different

Figure 1

An approximation of Von Koch’s snowflake curve.
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domains: symbolic regressions, finding trigonometric
identities, the Santa Fe ant trail, and caching algorithms.

This paper extends grammatical evolution to L systems
to solve the problem of obtaining arbitrary fractal curves
with a given dimension. The same approach could be used
in other domains. Previous work by other authors has
applied genetic algorithms to L systems, rather than
grammatical evolution. Ochoa [32] evolves D0L systems
with a single rule that generates shapes similar to plants.
Other authors [33–35] evolve parametric L systems (an
extension of Lindenmayer grammars) [36] and encounter
the important problem that parametric systems are not
closed under the action of genetic algorithms. This
problem could easily be solved by our approach, because
grammatical evolution goes through an intermediate
grammar (in this case, it would describe a valid parametric
system) which ensures that the actual L system generated
is syntactically correct. In this paper, we do not address
this problem. We use D0L systems where simple genetic
algorithms would be sufficient. However, we have grounds
to prefer the grammatical-evolution approach, because it
allows us to simultaneously evolve the L system and the
angle used in its graphic interpretation, as described later.

The design of L systems that represent curves
with a given fractal dimension
Designing fractal curves with a given dimension is
relatively easy for certain values of the desired dimension,
but very difficult for others. The following L-system rules
represent (with a turtle graphic interpretation based on an
angle step of 60�) the iterators for three different fractal
curves with the same dimension: 1.2618595. . . (log 4/log 3).
The first one, as shown above, corresponds to Von Koch’s
snowflake curve. All four (and a few more) could have
been obtained by hand through a simple geometrical study
of the curve iterator:

F��F�F��F�F

F��F�F�

F���F�FF�F�

F��F�F�F�F�.

On the other hand, designing a fractal curve with a
dimension of 1.255 would be much more complicated. The
first step would consist of obtaining two integer numbers,
a and b, such that 1.255 � log a/log b. This step could
be relaxed to asking for two integers such that the given
dimension would be approximated within some degree of
accuracy (for instance, 0.001).

The second step would be to design a geometrical
iterator such that it would take a steps to advance a
distance equal to b. We solve this problem automatically

by means of grammatical evolution. Our genetic algorithm
acts on genotypes consisting of vectors of integers. It
makes use of a fixed grammar to translate the genotypes
into an intermediate level, which can be interpreted as a
rule for an L system that, together with a turtle graphic
interpretation, generates the final phenotype: a fractal
curve with the desired dimension, or an approximation
of the same.

The developmental algorithm
The initial population consists of 64 vectors of eight
integers in the interval [0, 10]. Vectors of different lengths
are later generated by the genetic algorithm. Other
intervals (such as [0, 255]) can be used so as to include
genetic code degeneracy. These have been tested and
shown to work, although no significant improvement in
performance has been detected.

In our first experiment, the genotype of one individual
in the population (a vector of n integers) is translated by
making use of the following D0L grammar:

0: F��F

1: F��FF

2: F��F�

3: F��F�

4: F���F

5: F���F

6: F��F�F

7: F��F�F

8: F���

9: F���

10: F��e

where e is the empty string.
The translation is performed according to the following

developmental algorithm:

1. The axiom (first word) of the D0L grammar is assumed
to be F.

2. As many elements from the remainder of the genotype
are taken (and removed) from the left of the genotype
as the number of F in the current word. If there remain
too few elements in the genotype, the required number
is completed circularly.

3. The current word derives a new one in the following
way: each F in the word is replaced by the right-hand
side of the rule with the same number as the integers

A. ORTEGA ET AL. IBM J. RES. & DEV. VOL. 47 NO. 4 JULY 2003

486



obtained by the preceding step. In the case of genetic
code degeneracy, the remainder of the integers modulo
11 is used.

4. If the genotype is now empty, the algorithm stops, and
the last derived word is the output.

5. If the derived word has no F, the whole word is
replaced by the axiom.

6. Go to step 2.

In any derivation, the following implicit rules are also
applied:

����

����.

Let us look at an example. Let the individual genotype
to be translated be the seven-element vector

10 6 7 6 0 2 7.

We start from axiom F. It contains one F; therefore,
at step 2 we extract one element from the left of the
genotype (10). The remainder of the genotype becomes

6 7 6 0 2 7.

In step 3, by applying rule 10, the axiom derives e (the
empty string). The derived word has no F, so in step 5 we
replace it with the axiom F. This is the second word in the
derivation. We return to step 2. The current word contains
one F; therefore, we take one element (6) from the
remainder of the genotype, which becomes

7 6 0 2 7.

In step 3 we apply rule 6 to the only F, deriving F � F.
This is the third word in the derivation. We return to step
2. The current word contains two Fs; therefore, we take
two elements (7, 6) from the remainder of the genotype,
which becomes

0 2 7.

We now apply rule 7 to the first F and rule 6 to the
second F in F�F, deriving F�F�F�F. This is the fourth
word in the derivation. We return to step 2. The current
word contains four Fs; therefore, we should take four
elements from the remainder of the genotype, but we
only have three. We complete the required number
circularly and take (0, 2, 7, 0). The genotype vector
becomes empty.

We now apply rule 0 to the first F, rule 2 to the second,
rule 7 to the third, and rule 0 to the fourth F in F�F�

F�F, deriving F�F��F�F�F. This is the last word in
the derivation, the result of the algorithm.

We can now simplify the output by erasing
unnecessary �� pairs, if any (there are none in this case).
We may also add or delete � or � signs at the beginning

and the end of the word, so that the turtle ends its
movement in the same direction it started (this is a
requirement for some of the theorems we are applying).
In this case, we obtain F�F��F�F�F�. The rules
of the D0L system generated by the developmental
algorithm are

F��F�F��F�F�F�

����

����.

The genetic algorithm
We can now apply the algorithm described in [18, 19] to
compute from F�F��F�F�F� the dimension of the
fractal curve obtained from the D0L system by means
of a turtle graphic interpretation with a given angle
step. This dimension can be compared with the target
dimension, providing a fitness rule for the genetic
algorithm.

The scheme for the genetic algorithm is as follows:

1. Generate a random population of 64 vectors of eight
integers in the [0, 10] or the [0, 255] interval.

2. Translate every individual genotype into a word in the
alphabet {F, � �} using the developmental algorithm
described above.

3. Compute the dimension of the fractal curve
represented by the corresponding D0L system.

4. Compute the fitness of every genotype as
1/�target– dimension�.

5. Order the 64 genotypes from higher to lower fitness.
6. If the highest-fitness genotype has a fitness higher than

the target fitness, stop and return this genotype.
7. From the ordered list of 64 genotypes created in step 5,

remove the 16 genotypes with least fitness (leaving 48)
and take the 16 genotypes with most fitness. Pair these
16 genotypes randomly to make eight pairs. Each
pair generates another pair, a copy of their parents,
modified according to four genetic operations. The new
16 genotypes are added to the remaining population of
48 to again make 64, and their fitness is computed as in
steps 2 to 4.

8. Go to step 5.

The four genetic operations mentioned in the algorithm
are the following:

● Recombination (applied to 100%-generated genotypes).
Given a pair of genotypes, ( x1 , x2 , . . . , xn) and
( y1 , y2 , . . . , ym), a random integer is generated in the
interval [0, min(n, m)]. Let it be i. The resulting
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recombined genotypes are ( x1 , x2 , . . . , xi�1 , yi , yi�1 ,
. . . , ym) and ( y1 , y2 , . . . , yi�1 , xi , xi�1 , . . . , xn).

● Mutation (applied to n1%-generated genotypes if both
parents are equal, to n2% if they are different). It
consists of replacing a random element of the vector
with a random integer in the same interval.

● Fusion (applied to n3%-generated genotypes). The
genotype is replaced with a catenation of itself with a
piece randomly broken from either itself or its brother’s
genotype. (In some tests, the whole genotype was used,
rather than a piece of it.)

● Elision (applied to 5%-generated genotypes). One
integer in the vector (in a random position) is
eliminated.

The last two operations allow longer or shorter
genotypes to be obtained from the original eight element
vectors. The optimal values of n1 (100), n2 (100), and n3
(25) have been obtained by means of a set of 22 tests that
combine different angles and target dimensions. Table 1
shows that these parameters are important, for different
combinations of values give rise to very different
computing times.

The algorithm has three input parameters: the target
dimension, the target minimum fitness, and the angle step
for the turtle graphics interpretation. This procedure is
similar in many respects to biological evolution. There are
three different levels (Figure 2):

1. The genotype (nucleic acids), here represented by
vectors of integers.

2. The intermediate level (proteins), here represented by
words using the {F, �, �} alphabet. The translation
from the genotype to the intermediate level is
performed using a fixed grammar (the equivalent of the
fixed genetic code).

3. The final phenotype (organisms), here represented by
the fractal curves that are obtained from the L systems
built from the intermediate-level words by means of a
turtle graphic interpretation.

Figure 2

Parallels between our grammatical evolution approach and biological evolution.

Fixed grammar

translation algorithm

Genetic code

ribosome

Development

Integer string L grammar Fractal

Turtle

graphics

DNA Protein Organism

Level 1 Level 2 Level 3

F�F��F�F�F

Table 1 Results of experiments to obtain optimal values
of genetic operation rates.

n1 n2 n3 Average
generations

Average
CPU time

(s)

20 20 5 6668 1838
50 20 5 2979 1888
50 50 5 3794 3211
80 10 5 2625 1590
80 80 5 3917 1430

100 100 5 2216 1007
100 100 1 10,172 4776
100 100 10 1027 615
100 100 25 146 176
100 100 50 163 497
100 100 90 49 497

A. ORTEGA ET AL. IBM J. RES. & DEV. VOL. 47 NO. 4 JULY 2003

488



In a second experiment, the genotype of each individual
in the population contains one more element (it is a
vector of n � 1 integers). The first element (or its
remainder modulo 11) is interpreted as an index to a
vector that defines the angle to be used in the graphic
interpretation of the phenotype. Eleven possible angles
have been used: 120�, 90�, 72�, 60�, 45�, 40�, 36�, 30�, 24�,
20�, and 18� (i.e., the first submultiples of 360�). The
developmental algorithm is applied to only the last n
elements of the genotype. The genetic algorithm applies
to all of the n � 1 elements of the genotype. In this
way, the angle itself evolves, and fractal curves with
unexpected angles may be obtained.

Results
The algorithm described above reaches its targets with
surprising speed. Sometimes (for the simplest dimensions,
those that can be done by hand), the target is reached
in the first generation: In a set of 64 random eight-
element genotypes, there is a high probability of
encountering the codification of one of those
phenotypes). For other, less standard dimensions,
the number of generations required to reach a given
approximation to the target is usually larger, and can
sometimes be quite large. Table 2 shows a few of
the results we have obtained.

Because the algorithms use random numbers, different
random seeds give different results. We have thus
obtained sets of fractal curves, sometimes quite different
in appearance, that share the same fractal dimension.
Table 3 shows some results for a target dimension of 1.255
and an angle of 60�. In all of them, the minimum fitness
was set to 1000 (which corresponds to an error in the
target dimension below 0.001). The dimension of all of the
results came to be 1.2549. This fractal dimension has been
computed without considering possible overlappings of the
curves with themselves. A definition of dimension that
would take this into account could also be considered
[18, 19], but at the cost of longer computation times and
perhaps more generations. Figure 3 displays the fractal
curves approximated by the fourth derivation of the
corresponding L systems.

Figure 4 shows a few interesting fractals evolved by
means of our algorithms. Figure 4(a) has the same
dimension as Von Koch’s snowflake, with an angle of 36�.
Figures 4(b) to 4(f) display the fractal curves approximated
by the third derivation of the corresponding L systems.

Table 2 Number of generations to reach the target in a
set of tests of our grammatical evolution approach.

Dimension Angle
(degrees)

Number
of tests

Number of generations
to reach target

1.1 45 10 37 to 9068
1.1 60 4 119 to 72,122
1.2 45 8 188 to 11,173
1.2 60 10 21 to 750
1.3 45 9 50 to 18,627
1.3 60 4 14,643 to 66,274
1.25 60 2 1198 to 3713
1.255 60 15 1 to 2422

1.2618595. . . 60 4 1 to 2
1.4 45 10 79 to 781
1.4 60 10 33 to 1912
1.5 45 11 52 to 11,138
1.5 60 8 12 to 700
1.6 45 5 275 to 3944
1.6 60 1 116,913
1.7 45 2 585 to 1456
1.7 60 8 18 to 1221
1.8 45 2 855 to 2378
1.8 60 13 69 to 3659
1.9 72 1 5467
1.95 90 1 956
2 45 5 1
2 90 5 1

Table 3 Different fractal curves sharing the same
dimension, evolved by our method.

Number of
generations

Genotype
size

L-system word
developed

Axiom

4 16 �F�FF�FF� F��F��F
44 7 F�F��F�F�F� F��F��F
72 8 FF��F�FF� F��F��F

255 8 FF�FF��F� F��F��F
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Table 4 shows some of the results obtained with our
second experiment, in which the turtle angle itself was
subject to evolution by means of the genetic algorithm.

Conclusions and future research lines
Grammatical evolution has been applied to generate and
evolve Lindenmayer grammars that represent fractal
curves with a predefined fractal dimension. The procedure
we have described parallels biological evolution by acting
through three different levels: a genotype (a vector of

integers), a protein-like intermediate level (the
Lindenmayer grammar), and a phenotype (the fractal
curve). Variation acts at the genotype level, while
selection is performed at the phenotype level (by
comparing the dimensions of the fractal curves to the
desired value).

The results show the power of the approach. Those
cases in which a solution is easily found by hand were also
easily solved by our algorithms. Many interesting curves
have been found in more difficult cases; this paper shows
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a few of them. Evolution toward the target was relatively
fast, at least with our choice of values for the parameters
of the algorithms.

The angle used for the graphical interpretation of
the fractal curve has been introduced as a predefined
parameter in some experiments and automatically
calculated in others. The latter approach generated a
few good cases with unusual angles, although it has been
noticed that variations in the angle tend to be favorable
only during the first generations. Once a good angle has
been evolved, it is not easily changed, because changing
the angle of the graphical interpretation has a massive
effect on the dimension of the curve.

Similar results could have been obtained by directly
applying genetic algorithms to L systems represented by
arbitrary strings with characters F, �, and �. We have
actually performed this experiment and found no
significant differences in number of generations or
execution time, when compared with the grammatical
evolution approach. However, the latter is much better
if the angle is also evolved, as described in the previous
paragraph. It would also present important advantages
if used with parametric L systems.

In the future, we plan to work on the following:

● Evolution of other fractal properties besides dimension.
● Application of our approach to solve problems in other

areas where L systems are applicable.
● Its application to parametric L systems.
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