
   1 

SIGNAL  AND  IMAGE  ANALYSIS 
USING  CHAOS  THEORY  AND  FRACTAL  GEOMETRY 

Wlodzimierz  Klonowski 
Lab. of  Biosignal  Analysis  Fundamentals 

Institute of Biocybernetics and Biomedical Engineering,  Polish Academy of Sciences 
02-109 Warsaw,  4 Trojdena  St., Poland;  e-mail: wklon@hrabia.ibib.waw.pl 

 

   Abstract. Fractal geometry has proven to be a useful tool in quantifying the structure of a wide range of 
idealized and naturally occurring objects, from pure mathematics, through physics and chemistry, to biology and 
medicine. In the past few years fractal analysis techniques have gained increasing attention in signal and image 
processing, especially in medical sciences, e.g. in pathology, neuropsychiatry, cardiology. This article intends to 
describe fractal techniques and its applications. We concentrate on applications of chaos theory and fractal 
geometry in biosignal and biomedical image analysis. 
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The hardest thing in the world to understand is the income tax. 
                -- Albert Einstein 

1.  Introduction 

1.1.   Fractals and  deterministic chaos 
 

The term fractal (from Latin fractus  - irregular, fragmented) applies to objects in 
space or fluctuations in time that possess a form of self-similarity and cannot be described 
within a single absolute scale of measurement. Fractals are recurrently irregular in space or 
time, with themes repeated like the layers of an onion at different levels or scales.  Fragments 
of a fractal object or sequence are exact or statistical copies of the whole and can be made to 
match the whole by shifting and stretching. Sequential fractal scaling relationships are 
observed in many physiological processes. Spatial structures of many living systems are 
fractal. Fractal geometry has evoked a fundamentally new view of how both nonliving and 
living systems result from the coalescence of spontaneous self-similar fluctuations over many 
orders of time and how systems are organized into complex recursively nested patterns over 
multiple levels of space.  

A system can be anything that has more than one part. The system is said to be 
dynamical when system's states, including the relationships (interactions) between its parts 
(elements), change with time. Rules that describe these changes are called dynamics. If the 
interactions are nonlinear, i.e. if the result of action of one element onto another is not directly 
proportional to the action itself (the reaction is not simply proportional to the applied 
stimulus), the system is said to show nonlinear dynamics. For example, in classical mechanics 
the result of a force acting onto a body is an acceleration of the body proportional to the acting 
force because body’s mass is constant and does not depend on the body’s velocity; in 
relativistic mechanics this is not true since body’s mass does depend on its velocity.  
 Simple systems with nonlinear dynamics often generate very random-like effects 
known as chaos. The paradox of chaos is that it is deterministic i.e. results from a dynamic 
that is not govern by laws of probability. Because of extreme sensitivity to initial conditions 
and system's parameters chaotic system may seem to behave completely randomly.  But there is 
an order underlying such behavior. For example, random numbers from a computer generator 
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for this case there is the notion of self-affinity; within a self-affine structure the scaling factor 
is not constant [25]  (Fig. 5). 

Statistical self-similarity and self-affinity is often called Brownian self-similarity. An 
object showing this property may be decomposed into parts which looks much alike the whole 
object but are made up of randomly located (instead of being fixed) smaller parts, which in 
turn may be decomposed into still smaller randomly located parts etc. Virtually all fractals 
encountered in physical models have two additional properties: 1st - each segment is 
statistically similar to all others; 2nd - they are statistically invariant over wide transformation 
scale. The path of a particle exhibiting Brownian motion, observed in shorter and shorter time 
intervals, is the canonical example of this type of fractal, and so called fractal Brownian 
functions are a mathematical generalization of Brownian motion [2].  
 For a one-dimensional Brownian motion the mean square displacement is 

<ξ2> = 2Dt2H   
where D is diffusion constant and H is the Hurst exponent that represents a measure of 
smoothness of a fractal object – a low value of H is related to high roughness, while a high H 
near 1 is connected with a high smoothness. The scaling exponent H helps us to distinguish 
different types of stochastic processes. H=½ indicates that the process represents a classical 
Brownian motion that allows the occurrence of all step lengths with the same probability; for 
values H<½ the motion is called persistent (continuing in the same direction more often than 
if it was completely random), while for H>½ – antipersistent (changing direction more often 
than if it was completely random) [34]. 
  Fractal Brownian function,  VH(x) (where x is a q-dimensional vector of independent 
variables) has zero-mean Gaussian increment with variance: 

   <[VH(x+δ)  -  VH(x)]2>   �  xδx2H  
where H є (0,1) denotes Hurst exponent.  For a one-dimensional fractal Brownian function the 
fractal dimension D  of the graph described by this function is   

  D = 2 – H. 

Further, VH(x) has a random-phase Fourier spectrum with power  FH(f) such that  

  FH  �  f –β    
In one topological dimension H is related to β  by  

 β = 2H + 1 

In two topological dimensions  

 β = 2H + 2 

 A fractal Brownian function VH(x) defines q-dimensional fractal Brownian surface. 
Spectral density of a fractal Brownian function is proportional to  f—2H-1.  Kube and Pentland 
[6] demonstrated that a fractal Brownian surface with power spectrum proportional to f –β   

produces an image with power spectrum proportional to  f 2–β. So one can use the spectral 
falloff of the image to predict the fractal dimension of the surface [6].  
 If image’s power spectrum is modeled as 1/f β  noise, for statistically self-affine fractal 
Brownian motion the spectral exponent β is related to a fractal similarity dimension (spectral 
fractal dimension) DS   by the equation 

  DS   = (7 – β) / 2 

Power spectra are determined from  images’ two-dimensional Fourier transforms [35].  
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Second-order properties of a stochastic process such as auto-covariance and the 
spectrum are also available for examining self-similarity and measuring its indices; this is 
especially easy for stochastic processes on a real line (one-dimensional point processes). 
Fractal dimension and the Hurst number are estimated objectively by maximizing a spectral 
log likelihood [13]. 
 

2.4.   Fractal analysis as statistical analysis 

 Certain structures like quasi-crystals or network glasses display at any magnification 
scale similar, although never strictly identical images. Even in the apparently totally 
disordered systems such as glasses or polymer networks we may observe statistical self-
similarity  (repetition of characteristic local structures and certain typical correlations between 
them) if we use probabilistic description of the network. This is the most characteristic feature 
of the self-similarity: the fundamental information about the structure of a complicated system 
is contained already in quite small samples, and we can reproduce all the essential features by 
adding up and repeating similar subsets ad infinitum even if they are not strictly identical like 
in crystalline lattice, but just very much alike like in quasi crystals or network glasses [41].  

It should be emphasized that D is a descriptive, quantitative measure;  it is a statistic, 
in the sense that it represents an attempt to estimate a single-valued number for a property 
(complexity) of an object with a sample of data from the object. One can, for example, view D 
in much the same way that thermodynamics might view intense measures such as temperature. 
That is, as a measure of a property of some object or material, even though unlike in the case 
of temperature not much is known about the underlying mechanisms leading to this value.  D 
is not a unique, sufficient measure; for example, two objects may appear visually very 
different from one another and yet have the same fractal dimension [29]. 
 

2.5.   Length- and mass-related fractal dimension of  image border 

There are two basic approaches to measuring the fractal dimension of image border - 
length-related, when the size of a pixel side becomes the unit of length (the resultant D is 
called the capacity dimension) and mass-related methods, when the individual border pixel 
becomes the unit of mass (the ‘sandbox’ or the cumulative mass dimension) [29]. For 
example, the box-counting method (cf. 2.2) is mass-related and should not be confused with 
the length-related grid method (cf. 4.2) that sometimes is also called ‘box-counting’ method. 
 Because of fractal self-similarity, in length-related methods the magnitude of the 
resultant measure (perimeters, etc.) increases as the measuring element (ruler, etc.) decreases 
in size. The relevant power relationship is 
  L(e) = Fes  
where L(e) is the equivalent perimeter as a function of the resolving element, e , F is a 
prefactor, and s is the slope of the plot of   log[L(e)]  vs.  log(e). Then length fractal dimension 
D = 1 – s.  Since s is negative and │s│ is less than 1,  D  is between 1 and 2 [29] (cf. Fig. 6). 
 The mass-oriented methods involve counting of border pixels contained in a sampling 
region (e.g. disc diameter) as a function of the sizes of the sampling regions. One centers 
boxes or circles (the result is the same irrespective of the shape used) of different sizes at 
many randomly located points on the border and counts the number of border pixels contained 
within each box or circle. The log of the number of pixels within each box or circle is plotted 
against the log of the measuring element (edge size, diameter). A fractal model gives a line 
with a positive slope, which is the D for that object. The power relationship plotted is 
  µ(r) = ArD  
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where µ(r) is the number of pixels (mass) in a box of size  r,  r is the circle diameter or box-
edge length, A is a prefactor, and  D  is the slope of the plot of  log[µ(r)]  vs.  log(r) and  D  is 
the mass fractal dimension [29] (cf. Fig. 6).  
 Mass measure provide another and often different value(s) of D for the same object 
analyzed with length measures. For Euclidean objects and mathematical fractals the length 
and mass fractal D are theoretically the same, but in practice they may differ slightly due to 
the less than perfect resolution in the digitized images [29]. With natural fractals the two Ds 
are often different, with the mass fractal D  value usually being the larger. 
 There is another distinguishing property of fractal objects. They may have either 
uniformly or non-uniformly distributed pixels; the global length-derived Ds may be the same 
for two fractals looking very different, but mass-derived Ds in such cases are often unequal 
[29]. The mass measures provide more information about the fractal object than the length 
measures [4]. Mass measures also lead to the concepts of lacunarity and multifractals 
discussed below.  
 
2.6.   Lacunarity 

The properties and characteristics of a fractal set are not completely determined by its 
fractal dimension D. Indeed, fractals that have the same fractal dimension may look very 
different - they have different ‘texture’, more specifically, different lacunarity (cf. Fig. 6). 
Lacunarity is a counterpart to the fractal dimension that describes the texture of a fractal. It is 
strongly related with the size distribution of the holes on the fractal and with its deviation 
from translational invariance. Roughly speaking, if a fractal has large gaps or holes it has high 
lacunarity; on the other hand, if a fractal is almost translationally invariant it has low 
lacunarity.  

Lacunarity (from the Latin lacuna for lack, gap or hole) measures structural variation 
or inhomogenities that may be manifested by ‘texture’ [29]. In a restrictive sense it is a 
measure of the lack of rotational or translational invariance. In a more general sense, 
lacunarity is a measure of non-uniformity (heterogeneity) of structure or the degree of 
structural variance within an object.  Lacunarity is usually defined in terms of mass related 
distribution. A common procedure is to calculate the mean and variance (or standard 
deviation) of some measure, e.g. the mass (number of pixels) in a box of a given size. For 
fractals, the result of this calculation is a strong function  of a scale; thus to obtain a single 
number for lacunarity  the variance calculations must be normalized.   This can be done, for 
example, by dividing the variance by the square of mean at each scale. Alternatively, one can 
divide the standard deviation by the mean at each scale to give what in statistics is called the 
coefficient of variation or relative dispersion (the former result is simply the square of the 
latter). For a self-similar object the coefficient of variation should be constant with scale, 
since the form of the object at large scales is a magnified version of its form at small scales. 
That is, the object looks the same at all scales. Therefore, the mean and standard deviation 
would scale up in the same proportion and their ratio would be the constant, which is equal to 
lacunarity. Furthermore, the variability of the mass measure about its average value would 
have a constant vertical scatter when plotted in the log-log graphs (cf. Figs. 6C and 6F)) [29]. 
So, lacunarity may be interpreted as the width of the mass distribution functions. Lacunarity 
measures to the extent at which a set is not translationally invariant [14].  

Lacunarity may be calculated from the fluctuations of the mass distribution function by 
using the gliding-box algorithm. In this method the image (set) under study is put on an 
underlying lattice with a mesh size equal to 2a;  for instance, the underlying lattice is the array 
of pixels provided by the image processing system which is used to digitize the structure. 
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Now, one considers a box of radius r that ‘glides’ on this lattice in all the possible manners, 
its center being placed successively on the different sites of the underlying lattice. Probability 
function that a gliding box of radius r contains  mass M  (the mass embedded in a box is equal 
to the number of particle centers situated inside the box or at its boundary) is given by : 
        Q(M,r)  =   n(M,r) / [(L/a)E] 
where E is the Euclidean dimension, n(M,r) the number of gliding boxes with radius r and 
mass M,  [(L/a)E] the total number of boxes, L the characteristic linear size of the set defined 
by its boundary, provided that є ≤ r ‹‹ L where  є denotes radius of a particle (i.e. the set’s 
element) and the mesh size 2a should be chosen in such a way that a is lower or equal є.  
Statistical moments of  Q(M,r) are equal:   

ZQ
(q)(r) = ΣM MqQ(M,r)   

and the lacunarity at scale r is defined by the mean-square deviation of the fluctuation of mass 
distribution probability Q(M,r) divided by its square mean: 

  Λ(r) = ZQ
(2)(r) / [ ZQ

(1)(r)]2  
The definition can be applied to any set, which is not necessarily fractal at an arbitrary scale r.  

Lacunarity quantifies the elusive notion of texture. Checking that the q-th moments of   
Q(M,r) scales as power laws with exponent   [(q-1)D + E]  provides an explicit demonstration 
of self-similarity and a new way of determining fractal dimension D. The gliding-box 
algorithm has been applied extensively in order to study the morphology of experimentally 
grown aggregates and to measure their lacunarity [14]. 

For scintigraphic images lacunarity was computed as 

  L =  < [(A/<A>) – 1]2 >   
where  A - actual activity,  <A> - expected activity [37]. 
 

3.     1-D  fractals and  signal analysis 

Biomedical signals are generated by complex self-regulating systems. That is why 
physiological time series may have fractal or multifractal temporal structure, while being 
extremely inhomogenous and non-stationary. A characteristic feature of nonlinear (as opposed 
to linear) process is the interaction (coupling) of different modes, which may lead to non-
random signal phase structure. Such collective phase properties of the signal cannot be 
detected by linear spectral methods.  

Until introduction of personal computers signals like EEG was registered as curves 
written by special pens on long and wide paper tapes, in such a way that pens’ displacements 
perpendicular to the direction of paper movement were proportional to the amplitudes of the 
registered signals. Such curves show statistical self-similarity and may be treated as fractals, 
like seashore lines. With introduction of computerized data-acquisition systems biosignals are 
unregistered numerically, in a form of time series.  

 
3. 1.  Higuchi’s algorithm 

For calculation of fractal dimension of such series in time domain one may use quick 
and easy algorithm proposed by Higuchi. A fractal curve may be subdivided into k curves 
(k = k1, k2, …, kmax)  that are similar. Then the length of this curve may be expressed as 
proportional to k-D, where fractal dimension, D , measures complexity of the curve - for  a 
simple curve  D  is equal 1, for a curve which nearly fills out the plane  D  is close to 2.  
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In computerized data-acquisition system the signal recorded on a selected channel is 
represented by the time series  

x(1), x(2), x(3),..., x(N) 
where x(i) is the signal’s amplitude at the i-th moment of time (i=1,...,N) and N is the total 
number of points;  from this one then constructs  k  new time series  x(m,k): 

x(m,k):  x(m),  x(m+k),  x(m+2k),  ... ,  x(m+int[(N-m)/k]* k)       (m=1, 2,...,k) 
where int[...] denotes the greatest integer not exceeding the number in the brackets; m and k 
are integers indicating the initial time and the time interval respectively. For example, if 
N=100 and  k=4  one obtains four time series: 

x(1,4):   x(1), x(5),..., x(97) 
x(2,4):   x(2), x(6),..., x(98) 
x(3,4):   x(3), x(7),..., x(99) 
x(4,4):   x(4), x(8),..., x(100) 

In Higuchi’s method the length of the curve x(m,k) is defined as: 

Lm(k)   =  { [  |x(m+i*k)- x(m+(i-1)*k)|] * (N-1)/int[(N-m)/k)*k]} / k   
                   i=1,int [(N-m) / k] 

where the term (N-1)/int[(N-m)/k)*k] is a normalization factor. Lm(k) is then averaged for all  
m  giving the mean value of  the curve length, L(k) , for given value of k.  The procedure is 
repeated for several  k  and then from the log-log plot of log(L) vs. log(k)  using the least-
square method  one obtains Higuchi’s fractal dimension of the signal,  D : 

D  = - log[L(k)] / log(k) 
 We have to stress that Higuchi’s fractal dimension is always between 1 and 2 since it 
characterizes complexity of the curve representing the signal under consideration on a 2-
dimensional plane. This fractal dimensions should not be mistaken with fractal dimension of 
an attractor, which is calculated in the system’s phase space. Attractor dimension, e.g. 
correlation dimension, is usually fractal but it may be significantly greater than 2, it may 
provide some measure about how many relevant degree of freedom are involved in the 
dynamics of the system under consideration. Calculation of attractor’s fractal dimension 
requires previous embedding of the data in phase space, using e.g. Taken’s time delay method 
[44]. For Higuchi’s method construction of phase space and data embedding are not needed, 
the algorithm works on raw data. Also ‘classical’ fractal dimensions, used e.g. for cell 
contours characterization should not be confused with fractal dimension calculated in the 
phase space (cf. [8]). 
 

3. 2.   Examples – analysis of EEG signals 

Fractal dimension has been proposed as a useful measure for the characterization of 
electrophysiological time series. Electroencephalogram (EEG) traces corresponding to 
different physiopathological conditions can be characterized by their fractal dimension, which 
is a measure of the signal complexity. Generally this dimension is evaluated in the phase 
space by means of the attractor dimension or other correlated parameters. Nevertheless, to 
obtain reliable values, relatively long signal intervals are needed and consequently only long-
term events can be analyzed; also much calculation time is required.  

Fractal methods of EEG-signal processing enabled to establish relationship between 
electro cortical activity and hypnotizability.  Fractal dimension of EEG in the theta frequency 
range (3 to 8 Hz) were examined in high and low susceptible individuals.  The dimensionality 
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measures suggest that individuals highly susceptible to hypnosis display underlying brain 
patterns associated with imagery, whereas low susceptible individuals show patterns 
consistent with cognitive activity (i.e. mental math)  [39]. 

Using time series of different length it is possible to show, that there is a monotonous 
relation between fractal dimension and the number of data-points. Preissl et al. [40] 
investigated what the pointwise dimension of electroencephalographic time series can reveal 
about underlying neuronal generators.  Cortical activity can be considered as the weighted 
sum of a finite number of oscillations (plus noise). The correlation dimension of finite time 
series generated by multiple oscillators increases monotonically with the number of 
oscillators. A reliable estimate of the pointwise dimension of the raw EEG signal can be 
calculated from a time series of a few seconds duration, which for EEG-signals is still rather 
long. These results indicate that the pointwise dimension on the basis of such raw EEG signals 
allows conclusions regarding the number of independently oscillating networks in the cortex 
[40]. Pointwise dimension is calculated in system’s phase space not directly in the time 
domain as e.g. Higuchi’s fractal dimension.   

It is feasible to use fractal dimension as a tool to characterize the complexity for short 
electroencephalographic time series. But to analyze events of brief duration it is necessary to 
make calculations directly in the time domain, using e.g. Higuchi’s algorithm. Fractal analysis 
allows investigating relevant EEG events shorter than those detectable by means of other 
linear and non-linear techniques [38].  

For example, we investigated possible influence of magnetic field on human brain by 
analysing EEG-signal using Higuchi’s method. No influence of magnetostimulation could be 
noticed while inspecting EEG-recordings with the naked eye. Linear methods like FFT 
analysis did not reveal any evident changes indicating possible influence of 
magnetostimulation. Calculation of fractal dimension of EEG-signal clearly demonstrates an 
influence of magnetic field on the brain [46]. Fractal dimension was also used to assess 
influence of  phototherapy on patients suffering with Seasonal Depression (Seasonal Affective 
Disorder, SAD); again, EEG-signal assessing with naked specialist eye or using linear 
methods  did not reveal any evident changes, but calculation of D  demonstrates influence of 
applied phototherapy  (Fig. 7).   
 

4.   2-D  fractals  and   image analysis 

A digitized image is a pattern stored as a rectangular data matrix. It is distinguished 
between binary images, grayscale images and color images. Binary images are matrices where 
pixels belonging to the pattern are stored as 1, pixels from the background are stored as 0. The 
storage may also be vice versa. On a video screen the 1-pixels are rendered as black, the 0-
pixels as white or again vice versa. Binary images are said to have a depth of 2 values i.e. each 
pixel has value 1 (‘black’) or 0 (‘white’), or vice versa. Grayscale images are matrices where 
the matrix elements can take on values from 0 to 255. The rendering on a video screen is a 
presentation of the values from white (0) to black (255). Most color images are overlays of 
three grayscale images [26]. 
 

4.1.    Landscapes - application of  1-D fractal analysis to 2-D patterns 

 It is possible to transform a 2-D pattern in such a way to obtain a 1-D pattern, which 
may then be analyzed using methods applied for signal analysis. For example, starting with 
some gray level images, first by proper segmentation binary images are produced. Then one 
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takes a strip of the binary image total length of  N  pixels and height of M pixels, with N 
several times greater than M.  At each point of the long axis, denoted as  t � [1, N], the 
fraction of  ‘white’ pixels in the column orthogonal to the long axis is calculated: 

 x1(t)=M1(t)/M � [0, 1]  

where M1(t) denotes the number of white pixels in the t-th column. The resulting series of N 
rational numbers x1(t) serves as input for the subsequent ‘signal analysis’. 
 Such approach was adapted for example by Mattfeld [32] for analysis of histological 
texture of tumors. He analyzed microscopic images of fibrous mastopathy and of invasive 
ductal mammary cancer, with epithelial component represented as white and pore space as 
black (Fig. 8). Produced signals were undergone analysis using linear methods 
(autocorrelation, power spectra) and chaos theory methods (attractor correlation dimension in 
phase space),  showing that nonlinear methods give possibility to differentiate between two 
kinds of tumors and that these differences may have some biological justifications (Fig. 9).   

In a variation of this method for a binary picture one first counts black (or, 
respectively, white) pixels in a row and then, using the total number of pixels in the row, 
normalize the derived number. In a gray value picture one calculates the sum of the gray 
values and normalize the numbers by using the largest gray value. Stepping through the whole 
picture row by row (other procedures may use a similar counting technique but in a different 
direction of the picture, e.g. along the columns, or diagonal directions, or in some rectangular 
frames), one sets up a stochastic signal containing the information of the picture. This 
stochastic sequence is called a landscape. Since the landscape follows from a static picture, 
one has to replace the time variable of the Brownian motion by a spatial coordinate defined in 
the reduction process. Extracting useful information from the landscape, one introduces a gap 
or delay, ξ , between two values of the stochastic process and use the resulting set of data in 
the calculation of the standard deviation. Changing the delay continuously, one can create a 
dependence of the standard deviation on the delay and from log-log plot one can then estimate 
the Hurst exponent or fractal dimension [34]. Leukemic cells and cell lines of breast 
carcinoma were examined using this method. The results obtained show that the exponent H 
differ in several cases from the critical value H= ½, indicating that the geometric structure of 
chromatin differs from a random distribution [34]. 
 

4. 2.  Methods of measuring fractal dimension of  images’  borders 

There are two basic approaches to measuring fractal dimension of an outlined (border) 
object in a plane - length-related methods (giving length-derived Ds, D-length) and mass-
related methods (giving mass-derived Ds,  D-mass;  cf. 2.4) [29]. There exist several 
procedures of measuring fractal dimension of images’ binary borders: tile-counting, dilation, 
mass-radius relation, divider stepping, intercept censoring, correlation methods [33],   
walking-dividers method [13]. For gray scale object usually an edge-detecting algorithm is 
firstly applied to produce binary image. But the triangular prism surface area (TPSA) 
algorithm may be used for calculation of fractal dimension of gray images [26,27].  Bartlett 
[15] compared different methods used to calculate fractal dimension for characterizing 
medical images.  

Smith et. al. [7,29] compared three length-related methods:  dilation (‘DIL’), box 
counting (‘GRI’) and perimeter trace (‘TRA’) methods.  These procedures are all based on the 
so-called Richardson-Mandelbrot plot, where certain measure of a pattern border is plotted 
against the respective measuring element size (also called resolvable size) on a log-log scale. 
The fractal dimensions can be determined from the slope s of the regression line - in each of 
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three methods  D = 1 – s ;  as it should be for length-related methods,  s is negative and │s│ is 
less than 1,  so D  is between 1 and 2 (cf. 2.2). 

So, the classical trace method of Richardson involves measuring the perimeter of an 
object with various lengths of rulers (spans or calipers) and the log of perimeter is plotted 
against the log of the ruler length; the perimeter (e.g. coastline) is self-similar over a limited 
range of scale.  

The dilation method uses widening and smoothing of the border by convolution 
operation with binary disks (i.e. each pixel of the border is replaced by a disc with a diameter 
of E pixels), followed by thresholding of all non-zero pixels to Boolean one;  the effect of this 
operation (convolution procedure) is to widen the border by width E, so reducing or ‘filtering’ 
shape details of size less than E.  The length of the contour is estimated by dividing the total 
surface area of the widened outline, A , by its width (kernel diameter) E;  the length decreases 
as E increases. The log of lengths  L=(A/E)  are plotted vs. the log of diameters E.  

The grid method (also called mosaic-amalgamation method or tile-counting method) is 
based on the concept of ‘covering’ the border. The binary border-image to be analyzed is 
superimposed on a succession of square grids of increasing edge lengths. A tile is counted 
only once if it is encountered by the border, irrespective of the number of pixels that encounter 
it. Then, the log of the number of tiles encountered is plotted against the log of the tile edge 
length. In grid method only the number of tiles of each size required to cover the set (border) 
is important, a crude measure in that it says nothing about the structure or distribution of 
pixels within an image [4]; mass measures, however, deal with this distribution property in 
that the number of pixels in a given size box is the weighted measure, and thus leads to the 
notion of mass density (i.e. mass/area). The grid method, sometimes also called  box-counting 
method, should not be confused with the box-counting procedure described in 2.2, which 
estimates fractal dimension of the whole and not necessary 2-D fractal object and which 
belongs to mass-related methods.   
 The three methods (‘TRA’, ‘DIL’ and ‘GRI’) may be measuring somewhat different 
properties related to the fractal dimension of the structures. So it is not legitimate to average 
them, but they often give very similar results (Fig. 10). The results of all three operations 
underestimate the values of ‘true’ fractal dimension of mathematical fractals by a few percent 
but give similar Ds. The dilation method seems to be superior because it measures at every 
point of the border at all scales and hence generates more data [7]. 
 

 

 

4.3.    Fractal analysis as a modern morphometric tool 

Perhaps the most important practical aspect of fractal analysis may be use of fractal 
dimension as a quantitative variable that morphologists can study as a dependent variable in 
the context of many independent variables. For example, neuronal structure becomes more 
complex with development, but the questions are why and how? The relevance of D for 
neuronal function is unknown, but fractal dimension is possibly a reflection of the degree of 
synaptic connectivity, i.e. the greater the irregularity of the border, the greater the opportunity 
for synaptic contacts [7]. By plotting D as a function of time, one may be able to determine 
the functional relationship between age and complexity. In combination with other measures 
D may contribute to the development of a new branch of science, ‘quantitative cellular 
morphometry’, enabling reduction of the morphometric data to a few numbers relevant to 
structures’ and/or underlying processes’ classification [7]. The aim of measuring fractal 
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dimensions is not only to add a new structural parameter to already existing ones, possibly 
describing a new and very special structural characteristic; more important aim is to get 
deeper insight into the development of complex structures and the processes that contribute to 
structure forming [33]. 

Recently fractal methods were used in neurobiology, in addition to classical methods 
such as Sholl analysis that has long been used for quantitative morphological studies. Caserta 
et al. determined fractal dimension of neurons in 2-D and 3-D, using the cumulative-mass 
method. They found that Sholl analysis and fractal analysis correlate well [24]. There is also a 
correlation between the so-called aspect ratio (perimeter2/area) used in stereology and fractal 
dimension. Psychological studies have shown that there is a high degree of correlation 
between fractal dimension and the perceived complexity by human subjects. So, D can be 
considered as a quantitative descriptor whose magnitude gives some ‘feel’ for the structural 
complexity [7].  
 One of the advantages of fractal analysis is the ability to describe irregular and 
complex objects. Many natural fractal objects are often not very structurally uniform and have 
restricted, and often variable, ranges of self-similarity. A given value of fractal dimension, D , 
does not uniquely specify a cellular morphology and very differently looking objects can have 
the same or very similar D. To distinguish such objects to the ‘traditional’ measure of length-
related, capacity fractal dimension one can add the newer measures of mass-related fractal 
dimension and lacunarity, and the notion of multifractal [29]. No single parameter can 
completely describe the fractal nature of biological structures [35]. 

The characteristics of cellular morphology that most influence the magnitude of D are 
the profuseness of branching and the roughness of the border, with increase of either leading 
to a larger D [7]. Two cells that look very different, e.g. the one with few branches and a 
rugged border and the one with a smooth border and many branches, may have the same D 
(Fig. 11). D provides no unique morphological specification, since at a higher magnificence a 
rough border might appear as diffuse branching while at lower magnification profuse 
branching might look like rough border – these are manifestation of self-similarity [29].  

Fractal analysis became an important classificatory methodology for objective 
characterization of and discrimination between closely related conditions. The general 
approach of such diagnostic scheme is: 1st - characterize the case by several features, 
numerically describing some or all of the factors considered subjectively by pathologists, and 
2nd - assign diagnosis to the case based on these features, in accordance with a prescribed 
classificatory approach determined and validated by a representative set of cases [35]. 

For example, fractal dimension of the differentiating glial cells were measured over 
time; it remained constant over a 10-fold range in optical magnification, illustrating that 
cultured glial cells exhibit this important characteristic of fractal objects. Fractal analysis was 
applied to the mammography as well as to the histological sections of a breast carcinoma, 
providing a specific measurable value of the growth of a tumor in addition to the common 
used metric diameter. Evaluation of fractal dimension of nuclear outline of lymphoid cell 
could be a useful tool to distinguish between benign and malignant cases [31].  

Mattfeldt [32] applied nonlinear deterministic methods from chaos theory to pattern 
analysis of tumor cells. He compared histological texture in 20 cases of mastopathy with 20 
cases of mammary cancer. Epithelial texture plays a central role in diagnosis and grading of 
malignancy by a pathologist. Mastopathy is a benign, self-limiting process in which epithelial 
growth ceases after a certain time, while breast carcinoma is a malignant tumor. Transforming 
microscopic images of epithelium into signals by using procedure described above (cf. 4.1) 
and then embedding these signals in a phase space using time-delay method, Mattfeldt found 
that correlation dimension differs considerably – in mastopathy it usually does not exceed 3, 
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even for embedding dimension as high as 30, while for carcinoma it usually increases with 
embedding dimension up to more than 10   (Fig. 9)  [32]. 

Many human tumors have a fractal structure over a wide range of scales so fractal 
dimension is a useful morphometric discriminant between different diagnostic categories, e.g. 
in the differential diagnosis of malignant cells based on gray-scale values of nuclei in the 
different malignant cells [31]. Nuclear images should not be viewed as self-similar but more 
restrictively as statistically self-affine [35]. Nuclei display various degrees of membrane 
irregularity and chromatin complexity, the quantitative characterization of which cannot be 
correctly achieved by conventional geometric descriptors. Fractal geometry has been applied 
for quantifying nuclear features in order to distinguish between normal and cancer cells, or 
proliferating, reactive or immune-committed cells [36]. 
 Nuclei of MCF-7 human breast cancer cells were investigated by fractal morphometry. 
Fractal dimension calculated using box-counting method proved to be effective for 
quantifying nuclear changes in cells treated with steroid hormones, namely the estrogen 17β-
estradiol that stimulates cell proliferation and the glucocorticoid dexamethasone that inhibits 
the expression of many genes. The study revealed the feasibility of quantifying subtle changes 
in the ultrastructural morphology of the cells submitted to distinct hormonal treatment. Hence, 
the fractal approach may be helpful in detecting ultrastructural-morphological changes of 
nuclear components occurring in the early phase of physiological and pathological processes 
[36]. 

Discrimination between scintigrams, images that have comparatively small matrices 
(128x128 or 64x64) and are very noisy (signal to noise ratio in the range of 8:1 to 10:1) and 
irregular, is possible if fractal dimensions are computed. For patients with lung edema (ARDS 
– Adult Respiratory Distress Syndrome) D =2.81 compared to D=2.61 for control group [37]. 
Fractal methods were also used for brain scans obtained by PET technique.  

A digitized light microscopic image can be viewed as a surface for which x- and  y-
coordinates represent position and the  z-coordinate represents gray level (intensity) (Fig. 12 ). 
The fractal nature of this putative, statistically self-affine surface can then be characterized 
both in the spatial domain with fractal dimension, and in the frequency domain with a spectral 
exponent. Chromatin appearance is shown to be statistically self–affine in breast epithelial cell 
nuclear images. Fractals are an appropriate paradigm for describing chromatin appearance and 
they provide important diagnostic information.  Differentiation between the benign and 
malignant cases is better using mean spectral fractal dimension than surface’s fractal 
dimension [35].  
 Fractal analysis was also used for studies of DNA sequences, proteins’ structure, 
metabolism, cardiovascular and pulmonary systems, and other areas of biology and 
physiology [37]. The use of fractal geometry in microscopic anatomy is now well established 
and it will be increasingly useful in establishing links between structure and function [29]. 
 

4. 4.  Fractal image compression 

Fractal methods may be used for data compression. For example, traditional 
electroencephalography (EEG) produces a large volume display of brain electrical activity, 
which creates problems particularly in assessment of long periods recordings. Fractal analysis 
enables to describe many EEG data points in terms of a single estimate of fractal dimension 
(1 < D < 2) and so to condense data about 100-fold, since we may calculate one fractal 
dimension for 100 raw data points (registered on one channel), that is for an interval of  0.25 – 
1.0  second. For example, by transforming raw EEG-signal into Higuchi’s fractal dimension 
even several hours of registration may be condensed onto one page diagram. The result 
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correlates with linear method of Fourier power spectra - when fractal dimension is lower than 
the average for the given patient it corresponds to shifting of the spectrum towards lower 
frequencies and when fractal dimension is higher than average it corresponds to shifting 
towards higher frequencies [45].   

It is not data compression in the sense this term is used in computer science since we 
are not able to “decompress” fractal dimension to obtain the original EEG-signal again. But 
data condensed in such a way may be very useful for doctors for quick assessment of patients.  
Bullmore et al. [22] used fractal method to analyze EEG of patients with epilepsy and showed 
that the method consistently defines ictal onset in terms of  rapid relative increase in D across 
several channels. Clinically severe seizures were characterized by more intense and 
generalized ictal changes in D than clinically less severe events. They state that ‘fractal 
diagnoses’ method is a computationally feasible way to achieve substantial  reduction in the 
volume of EEG data without undue loss of diagnostically  important information in the 
primary signal [22].  

Fractal methods may be used for image compression that is reversible. Several books 
and papers have already been published on this subject (cf. [23]). Fractal image compression 
algorithms find self-similarity at different scales and eliminate repeated description. While 
this compression technique may be time-consuming the compression ratio may be as high as 
50 to 100 and the image may be decompressed quickly using iterative methods. 
 

5.   3-D  fractals  and  texture characterization of  spatial surfaces  

 Fractal geometry is becoming increasingly more important in the study of image 
characteristics. There are numerous methods available to estimate parameters from images of 
fractal surfaces. The images’ fractal dimension may be measured either by use of the local 
second-order statistics (interpixel differences change with distance) or the Fourier power 
spectrum (rate at which it falls off with increasing frequency) [2]. 
 One of the most interesting aspects of the fractal surface model is that it relates 2-D 
texture measures to 3-D surface structure. Important result is that measurement of the 2-D 
image fractal dimension enables estimation of the 3-D surface fractal dimension that is a very 
good predictor of people’s perception of roughness. This discrimination is of special 
importance to shape-from-shading, shape-from-texture, and surface interpolation methods [2]. 
 Gagalowicz [1] presented evidence that texture discrimination depends on the local 
second-order statistics of the texture, as these determine the image’s roughness i.e. its fractal 
dimension, and thus the roughness of the 3-D surface. Pentland [2, 6] shown that the image of 
a fractal surface is also a fractal. Fractal dimension remains the primary characteristic 
calculated from image surfaces. It is invariant to change in scale and can characterize the 
roughness of the surface. Fractal theory is a good choice for modeling of 3-D natural surfaces, 
capable of describing such surfaces qualitatively, because: 1st - many physical processes 
produce fractal surface shapes; 2nd - fractals are widely used as a graphical tool for generation 
of natural-looking shapes; 3rd - surveys of natural imagery have shown that the 3-D fractal 
surface model furnishes an accurate description of both textured and shaded image regions. 

Different physical processes act over different ranges. Thus, the fractal dimension of a 
natural surface will depend on the dominant process at any particular scale - real surfaces 
cannot be true mathematical fractals, the size of a surface's basic particles prevents the infinite 
regression of detail that true fractals exhibit. But a surface can be called fractal if its fractal 
dimension is consistent over a wide range of scales. This property is known as scale 
invariance [6].  Fractal dimension and lacunarity are texture-related features [19]. A surface 
may have several distinct fractal dimensions as well as various measures of lacunarity [35]. 
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Fractal based segmentation, i.e. converting of a gray image to binary image according 
to local fractality, is a general and powerful technique. For example, two-parameter fractal 
segmentation (fractal dimension was calculated separately along the x and y image direction) 
yielded a classification accuracy of 84.4 percent [2], performance comparing quite favorably 
to other segmentation techniques like correlation statistics, co-occurrence statistics and texture 
energy statistics, despite the much larger number of texture features employed by these 
alternative methods.  

Fractal dimension of a surface is invariant with respect to linear transformation of the 
data and to transformation of scale. The fractal dimension found in the image, by virtue of its 
independence with respect to scale, appears to be nearly independent of the orientation of the 
surface. If fractal dimension in the x and y image direction are unequal the surface is 
anisotropic. One may use fractal dimension of imaged contours to directly infer that of 3-D 
surface - the surface’s dimension, DS  , is simply one plus the contours’ dimension,  DC  [2]: 

  DS   =  1 + DC 
 Surface shape is reflected in image patterning through projection foreshortening, a 
function of the angle between the viewer and the surface normal, and perspective gradients, 
which are due to increasing distance between the viewer and the surface. These two 
phenomena are independent. Use of fractal models to infer qualitative 3-D shape, i.e. 
smoothness/roughness, has the potential to significantly improve the utility of many machine 
vision methods. 
 

6.   Multifractals 

Objects can be multifractal, namely the fractal dimension can vary as a function of 
location within a set (image, frame).  A natural fractal  is only ‘statistically’ self-similar, i.e. a 
portion of the object ‘looks’ qualitatively like the whole. If the log-log plots of some results 
(e.g. equivalent mass) vs. log of the measuring elements (e.g. box size) produces  a ‘good’ 
straight line fit over sufficiently extensive range of scales (usually loosely or operationally 
defined as some orders of magnitude of the measuring element range) it is called scale 
invariance [29].  

To the degree that the global fractal dimension is a statistical measure of the whole 
object, it represents a measure of its global complexity and, hence, demonstrates the fractal 
properties of the object as a whole. On the other hand, the local fractal dimension represents 
the complexity and the fractal properties of different loci within the object. In a sense, this is 
the essence of multifractals – namely that objects can have global and different local fractal 
dimensions and, hence, local differences in complexity.  Multifractals actually possess an 
infinite number of fractal dimensions and the spectrum of fractal dimensions leads to the 
definition of quantities that are analogous to the thermodynamic properties of temperature and 
entropy  [4, 5, 29]  

Fractals look like natural surfaces and indeed, basic physical processes (ranging from 
aggregation of galaxies, through turbulent flows of lava, to the curdling of cheese and 
snowflake growth) that modify shape through local action produce fractal surfaces,  so fractals 
are found extensively in nature [5]. A single process, applied at one scale, can spread across 
all stages to produce a global monofractal of single fractal dimension. The process involved in 
generating fractals may begin at a large scale and contract to smaller scales during various 
stages. Fractals may be produced by either Mandelbrot’s rules (initiator and generator) [3] or 
with L-system (Lindenmayer system algorithm [29]) rules (axiom and production) [9]. 
Alternatively, the process may spread from the small to the large scale at all stages, as in 
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diffusion-limited aggregation. On the other hand, there may be two or more processes 
operating to produce a fractal – this is most likely to produce a multifractal [29].  

There may be a relationship between lacunarity and multifractals Lacunarity relates to 
the variation in the pixel counts at all boxes sizes (scales) and all boxes centers. Multifractals, 
by definition, indicate local variations across the object. Borders of biological cells may be 
multifractal in the sense that the mass dimension varies locally along the border [29]. 
 

7.   Concluding  remarks 

It this paper we demonstrated how useful it is to introduce fractal analysis as a tool to 
gain structural information from digitized images, both in biomedical sciences as well  as in 
engineering.   

Fractal models may be used for image segmentation, texture classification, shape-
from-texture, and the estimation of 3-D roughness from image data [2]. Related algorithms 
and suitable procedures are already implemented in some image processors  like IDOLON 2  
[27]. If the parameters gained by the analysis are taken to supply classification problems 
where textural information is to be processed, the structures under consideration do not 
necessarily have to be fractals [25]. 

In cellular morphometry cells and nuclei can be quantitatively described by measuring 
their fractal dimension.  It was shown that increases in measured D correlate with perceived 
increase in morphological complexity; furthermore, specific Ds correlate with specific degree 
of maturation. Fractal analysis can provide a new strategy for studying cellular differentiation 
since fractal dimension is a good quantitative measure of the degree of morphological 
differentiation; it is also a useful measure for comparative studies across and among species, 
as they relate to cellular evolution [21].  

Non-linear methods are considered to be much more complicated than linear ones. But 
recurring to what Albert Einstein said, anybody who has ever done income tax return may 
understand fractal geometry and chaos theory application in signal and image analysis. 
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Captions to Figures 
Fig. 1.  Fractal  patterns produced by lava flows from Kilauea volcano on the Big Island of 
Hawai   (photo by  W.Klonowski). 

Fig. 2. Sierpinski triangles - concept of self-similarity and calculation of D  by similarity 
method. a) Creation of Sierpinski triangle, S , by subsequent iterations, Sn � Sn+1.  In an 
iteration,  from each black triangle in  Sn  the triangular piece of  Sn+1 , congruent with the 
whole Sn , is ‘produced’;  each of  3 congruent pieces of  Sn+1  produced this way is exactly  ½  
the size of the given piece in  Sn  itself.  So, fractal dimension of  S  is 1.58. 

Fig. 3. Box fractal – example of calculation of  D using box-counting method. 

Fig. 4. Fractal canopie is very non-uniform and looks much alike the pulmonary system. 

Fig. 5.  Glial cells – example of natural fractals and statistical similarity. Ds calculated from 
the binary images of a single cell (A), a portion of the single cell (B), and of a group of cells 
(C) are practically the same [21]. 

Fig. 6.   Two different cell types – cerebellar Purkinje cells (A) and glial cells (B) have 
identical length-related D=1.66 but different mass-related Ds (1.72 and 1.66, respectively) and 
different lacunarities, Ls  (0.19 and 0.24, respectively).  Richardson-Mandelbrot plots used for 
calculation of length fractal dimensions have negative slopes (B. and E.)  while these for 
calculation of mass fractal dimensions have positive slopes (C. and F.) [29]. 

Fig. 7.  Fractal dimension of EEG-signal (calculated from raw data recorded from the 
electrode denoted O2 in 10/20 placement system) before and after phototherapy for a subject 
with Seasonal Affective Disorder (SAD), calculated using Higuchi’s algorithm (kmax = 8;  
abscissa - time in seconds). 

Fig. 8.  A series of 10 consecutive binary images, each  510x510 pixels,  from a binary image 
of a mammary carcinoma were put in line to produce the upper panel; then the fraction of the 
epithelial component (shown as white pixels) was calculated for each 510 pixel high column 
and recorded as a function of position to ‘produce the signal  (landscape)’, shown in the lower 
panel, which was undergone further analysis using chaos theory methods [32]. 

Fig. 9.  Estimated correlation dimension as a function of embedding dimension, mean values 
of the groups with 95% confidence bands. Upper curve – cases of carcinoma,  lower curve -  
cases of mastopathy [32]. 

Fig.  10.  Fractal dimension of a spinal cord neuron (above) measured by dilation (DIL), grid 
(GRI) and perimeter trace (TRA) methods.  Richardson-Mandelbrot plots of the equivalent 
perimeters  vs. measuring elements (resolvable size) for sizes 2, 4, 8, …, 128 pixels [29]. 

Fig. 11.  Silhouettes of two neurons with similar,  high  values of D, but of very different 
‘texture’; complexity of  A  is from rugged border, while that of  B  is due to profuse 
branching [7]. 

Fig. 12.  Surface plot of a malignant breast epithelial cell nucleus;  x- and  y-coordinates 
represent position and the  z-coordinate represents intensity (gray level) of a digitized light 
microscopic image  [35]. 
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Fig. 1 
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Fig. 2 
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Fig. 3  and  Fig. 4 
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Fig. 5  and  Fig.  6 
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Fig. 7 
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Fig. 8  and  Fig. 9 
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Fig. 10  and  Fig. 11 
 



W.Klonowski                                                  Signal and image analysis using chaos theory and fractal geometry  

31 

 
 
 
 
 
 

Fig. 12 
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