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Spontaneous pain is a common complaint in chronic pain conditions.
However, its properties have not been explored. Here we study
temporal properties of spontaneous pain. We examine time variability
of fluctuations of spontaneous pain in patients suffering from chronic
back pain and chronic postherpetic neuropathy and contrast properties
of these ratings to normal subjects’ ratings of either acute thermal
painful stimuli or of imagined back pain. Subjects are instructed to
continuously rate their subjective assessment of the intensity of pain
over a 6- to 12-min period. We observe that the fluctuations of
spontaneous pain do not possess stable mean or variance, implying
that these time series can be better characterized by fractal analysis.
To this end, we apply time and frequency domain techniques to
characterize variability of pain ratings with a single parameter: fractal
dimension, D. We demonstrate that the majority of ratings of spon-
taneous pain by the patients have fractal properties, namely they show
a power law relationship between variability and time-scale length; D
is distinct between types of chronic pain, and from ratings of thermal
stimulation or of imagined pain; and there is a correspondence
between D for pain ratings and D for brain activity, in chronic back
pain patients using fMRI. These results show that measures of
variability of spontaneous pain differentiate between chronic pain
conditions, and thus may have mechanistic and clinical utility.

INTRODUCTION

Chronic pain, by definition, is a state of continuous suffering
from ongoing pain, sustained for long durations past healing
from the injury that initially may have incited the pain (oper-
ationally defined as pain that persists for >6 mo). Besides
spontaneous pain, chronic pain patients also exhibit various
combinations of mechanical-, heat-, or cold-stimulus-evoked
increased pain sensitivities (allodynia and hyperalgesia of var-
ious types) as well as other somatosensory abnormalities
(Birklein et al. 2000; Clauw et al. 1999; Dworkin 2002).
Approximately 10% of adults have severe chronic pain
(Harstall and Ospina 2003), and back pain is the largest
contributor to this population (Cavanaugh and Weinstein 1994;
Deyo 1998).

Spontaneous pain is commonly observed in patients with
chronic pain, and its presence is a primary reason for subjects
seeking medical care. Clinicians agree that the incidence of
spontaneous pain is very high in chronic pain (B. Galer and R.
Dworkin, personal communication); yet we find few reports
documenting this incidence, ranging from 77 to 100% perhaps

varying by type (Birklein et al. 2000; Sindrup et al. 1999;
Tasker et al. 1991). Traditionally, clinical pain conditions have
been contrasted by questionnaires (Melzack and Katz 1999).
This approach, however, is not adequate to study time vari-
ability (dynamical properties). Therefore to our knowledge,
temporal characteristics of spontaneous pain have remained
unexplored.

Unlike other sensory modalities, fluctuations in intensity of
pain are slow and highly salient, and as a result patients
(Apkarian et al. 2001), and normal subjects (Apkarian et al.
1999; Hardy et al. 1968; Koyama et al. 2004; LaMotte et al.
1984; Strigo et al. 2002), can readily indicate their level of pain
on a continuous time scale. Empirical observations in our lab
(Apkarian 1999; Apkarian et al. 2001) demonstrate that inten-
sity of chronic pain fluctuates spontaneously, and subjects
instructed to indicate their pain intensity on a continuous scale
comply readily. This approach allows gathering information
about ongoing perceived pain over time and enables investi-
gation of underlying dynamical processes. Here we analyze
time series of pain ratings from patients with back pain,
postherpetic neuropathy (PHN), and from normal subjects.
We observe that the fluctuations of spontaneous pain seem
random and lack sinusoidal or Gaussian properties, which
implies that they are better characterized by studying their
fractal properties.

The concept of a fractal is usually associated with irregular
geometric objects that show self-similarity (Bassingthwaighte
et al. 1994; Feder 1988; Mandelbrot 1982; Peitgen et al. 1992).
Fractal objects are made of subunits (and sub-sub-units, etc.)
that look like the structure of the overall object. In theoretical
models, this property remains true at all length scales, and as a
result they are described as scale-free. Real objects, however,
are bounded by their size, which limits the range within which
scale-free characteristics apply. Many complicated objects in
nature, such as branching trees, corrugated coastlines, and
shapes of clouds, are fractal. Anatomical structures also display
fractal-like geometries, for example, arterial and venous trees,
tracheobronchial tree, and dendritic branchings of neurons
(Bassingthwaighte et al. 1994; Goldberger 1996; Goldberger et
al. 2002; Kruass et al. 1993). The fractal concept can be
applied to complex time varying processes that lack a single
scale of time in analogy to fractal geometries that lack a single
scale of length. Heart rate variability is perhaps the best
example (Ivanov et al. 1999) with many clinical applications.
Cortical neural activity has also been studied as fractals
(Linkenkaer-Hansen et al. 2001) as well as natural behaviors:
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errors in timing of repetitive motions (Chen et al. 1997),
locomotion (Hausdorff et al. 1996), swaying during standing
(Collins and De Luca 1995), fluctuations in psychological
perceptions (Kniftki et al. 1993), and perceived identity of
heard syllables (Ding et al. 1995). Fractal time series generate
irregular fluctuations across multiple time scales, analogous to
scale-free objects that branch with a fixed ratio across multiple
length scales (Goldberger et al. 2002). Fractal objects and
fractal time series are characterized by their fractional dimen-
sion, D. Because ratings of spontaneous pain resemble fractal
time series, we systematically study these properties. We test
the hypothesis that D can be used to characterize temporal
variability of spontaneous pain and can differentiate between
PHN and back pain spontaneous pain ratings. To demonstrate
that D reflects brain neural processing, we compare this value
in fMRI data across different brain regions, and test the
hypothesis that D derived from brain regions related to pain
should be more similar to the D derived from the rating of
spontaneous pain.

METHODS
Participants

Eleven back pain (2 males, 9 females; mean age, 37 yr), 14 PHN (7
males, 7 females; mean age, 62 yr), and 23 normal healthy subjects
(15 females, 8 males; mean age, 34 yr) participated in the study. They
gave written, informed consent to participate, according to the guide-
lines of the Institutional Review Board at Northwestern University.
Many of these subjects were participants in other brain-imaging
studies in the lab. Here we mainly examine the temporal fluctuations
of their ratings. In five of the back pain patients, we also examine the
relationship between brain activity and pain ratings. The fMRI data
are derived from a larger data set (Baliki et al. 2004). Back pain and
PHN patients were recruited from Northwestern University clinics
and newspaper advertisement. Patients with back pain fulfilled IASP
criteria (Merskey and Bogduk 1994) and were diagnosed in accor-
dance to recent guidelines (Deyo and Weinstein 2001). Briefly, all
back pain patients had unrelenting pain for >1 yr, primarily localized
to the lumbosacral region, with or without pain radiating to the leg.
We did not distinguish between various etiologies of back pain.
Patients with PHN fulfilled IASP criteria (Merskey and Bogduk 1994)
and were diagnosed based on standard guidelines (Dworkin and
Portenoy 1996). They all had pain along the course of a nerve after the
characteristic acute segmental rash of herpes zoster for >3 mo. All
patients had ongoing pain, and most PHN patients also had touch-
evoked pain (allodynia). Patients refrained from using analgesics for
24 h prior to their pain rating sessions.

Finger-span device for monitoring fluctuations of pain

Subjects indicate their level of pain continuously through a linear
potentiometer device that is attached to the thumb and index finger of
the dominant hand. Voltage output from the finger device is collected
and calibrated by a computer running the software LabView (National
Instruments, Austin, TX) (Apkarian et al. 2001). Subjects are seated in
front of a computer monitor, which displays the extent of their finger
span by a colored bar (y axis has an intensity scale of 0-100),
providing visual feedback of their rating. Ratings are sampled at 2.5
Hz. This is an analog proprioceptive scale used by others statically in
the past (Ahlquist et al. 1984). We have presented preliminary data
indicating that in normal subjects such continuous ratings of thermal
painful stimuli show a robust relationship between stimulus and pain
ratings [> = 0.8 between peak temperature on the skin, varying from
44 to 52°C, and peak pain ratings (Baliki et al. 2003)].

Experimental paradigm

Subjects are first trained on the use of the finger-span device. To
this end, they are presented with a moving bar on the computer
monitor that varies in time and instructed to rate its length with the
finger-span device, over a 5-min trial. Only subjects able to follow the
bar length at a consistency level that results in correlation coefficient
r > 0.75 between rating and bar fluctuations are included in the study,
within two attempts. More than 90% of subjects achieve this criterion.
Patients are then instructed to rate the fluctuations of their own
ongoing pain, usually for a period of 6—12 min. They are instructed
that maximum thumb-finger span should be used to indicate maxi-
mum imaginable intensity of pain (level 100) while thumb and finger
touching should indicate absence of pain (level 0). Healthy normal
volunteers are instructed to imagine back pain and rate its fluctuations
in time. A separate group of healthy subjects (n = 6, 2 sessions per
subject) rate acute thermal stimulus pain with the finger-span device.
Eight noxious thermal stimuli ranging in duration from 10 to 30 s
were applied to the lower back (baseline: 38°C, peak temperatures: 46
and 48°C, rise rate: 20°C) via a contact probe (1 X 1.5 cm Peltier
device). Durations and intensities of thermal stimuli as well as
inter-stimulus intervals (range: 30—60 s, mean = 55 s) were presented
in a fixed pseudorandom fashion.

Analysis of ratings

Fractal dimension, D, of the time series was determined with two
independent approaches: rescaled range analysis and calculation of
power spectra. Each approach has its unique advantages and assump-
tions. Both are well-established techniques and are only briefly de-
scribed here (Bassingthwaighte et al. 1994; Feder 1988; Mandelbrot
1982; Peitgen et al. 1992). Rescaled range analysis measures the
extent to which the range R (i.e., maximum minus minimum value)
spanned during a fluctuating trajectory depends on the number of
steps or time in the trajectory, 7. A characteristic of scale free
trajectories is that R and 7 obey a power law, ie., R * 7% To
empirically compute «, the scaling exponent for a given time series of
length N samples, we determine the average R for different length
scale 7 subsets of the original sample. 7 is varied form the largest
possible, when 7 = N, to 7 = 8 samples. We find the length scale, R,
by taking the distance between the maximum and minimum values of
the sub-series after detrending. We then scale R by the SD, S, of the
step size of this sub-series because series with larger step sizes will
naturally have a larger length scale regardless of their scaling prop-
erties. We find the average value of R/S for all sub-series at each time
scale (for 7 = N, there is only 1 sub-series, for 7 = N/2, there are 2
sub-series, etc.) and use them to create the “scaling plot, ” log(R/S) as
a function of log(7). If the time series exhibits scale-free fluctuations,
this relationship is linear with slope «. The fractal dimension D, is
related to the scaling exponent by the relation D = 2 — «a (Feder
1988).

For a given time varying signal, the power spectrum measures
power (energy per unit time) of the signal at each frequency. Power
spectra were computed with Welch’s averaged periodogram method,
in Matlab. Time series were first truncated to length 2,048 for PHN,
imagined pain and thermal pain, and 1,024 for back pain, detrended,
and then windowed with a Hanning window. The power as a function
of frequency is plotted on a log-log scale. The fractal dimension D, is
related to the slope of the spectrum, S, such that D = 2 + Y43 (Feder
1988}.

In most examples of fractal behavior, the fluctuation is scale free
only in a limited scale range. For each time series therefore, we
empirically determine the scaling region as the span of 7 or frequency
within which the series exhibits scale-free behavior. Typically, the
spectra became flatter outside that range. Based on comprehensive
inspection of the spectra and scaling plots, initial scaling ranges were
established for each data type. For each individual spectrum or scaling
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plot, these ranges were then incrementally reduced until a region of
maximal slope and maximal regression coefficient was identified. This
region was then used to compute the scaling exponent.

Functional imaging and analysis

DATA ACQUISITION. Functional brain images were acquired on a 1.5
T Siemens Vision MRI scanner. Standard clinical quadrature head coil
is used to image the entire brain. Functional MRI scans are performed
using echo planar gradient-echo acquisition sequence (repetition time,
3.5 s; echo time, 40 ms; matrix, 64 X 64; field of view, 240 mm; flip
angle, 90°; 4 mm thick slices with no gap). During each fMRI scan,
124 brain volumes were acquired over ~7 min. A vacuum beanbag
was used to immobilize the head.

Experimental paradigm

Five back pain patients were used in fMRI to determine the
correspondence between brain activity scaling properties and the
scaling properties of their ratings. The finger-span device was imple-
mented in the scanner just as it is used in the psychophysical testing
outside the scanner. The computer screen where the subject views his
finger-span was back projected into the scanner to provide the partic-
ipant with continuous visual feedback of the ratings. Just prior to
starting an fMRI scan, subjects were instructed to concentrate on
his/her ongoing pain and rate it with the finger-span device for the
duration of the scan. A trigger pulse from the scanner was used to
collect the ratings for every slice acquisition.

In visual-control scans, subjects were instructed to follow as closely
as possible fluctuations of a bar projected on a screen in time. This
visual tracking provides an adequate visual-motor control because it is
similar to the pain rating finger-span task in its cognitive demand, with
the important difference being that now the finger movement (i.e.,
variations in magnitude) is correlated with a visual input rather than
pain. Unbeknown to the subjects, the time curve of the bar mimicked
the variability that the subjects reported in earlier scans for sponta-
neous back pain. In addition to the visual control, a surrogate-control
was generated by inverting in time the recorded pain rating. This
procedure preserves all statistical properties of the original ratings, but
scrambles the relationship between the ratings and the actual pain
fluctuations, thus controlling for nonspecific activations.

fMRI data analysis

Preprocessing and data analysis were performed using FEAT soft-
ware (FMRIB Expert Analysis Tool; http://www.fmrib.ox.ac.uk/fsl,
Oxford University, UK). The first four volumes of each run were
discarded. Preprocessing included: slice acquisition time correction;
head motion correction (Jenkinson and Smith 2001); spatial smooth-
ing (Gaussian kernel: 5 mm FWHM); and a high-pass filter (cutoff,
100 s). A linear regression model was used to describe the data. The
covariate of interest was the time series of pain ratings convolved with
a gamma-variate hemodynamic response function (width, 3 s; mean
lag, 6 s). A covariate of no interest was used to further correct
head-motion artifacts derived from the motion correction procedure
during fMRI data preprocessing. Because patients with pain invari-
ably move during fMRI scans, we use the covariate approach to
further diminish the contribution of head motion to fMRI activity.
This ensures that brain regions that show activity are not contaminated
by head motion at the cost of decreasing sensitivity to detect activity
in areas where the signal may be reduced due to the covariate
correction (for further discussion see http://www.fmrib.ox.ac.uk/fsl).
The fMRI signal was linearly modeled on a voxel by voxel basis with
local autocorrelation correction (44).

Given our larger study (where fMRI study procedures are presented
in more detail) (Baliki et al. 2002; unpublished data), we extracted
time curves from four brain regions. Fractal dimensions for these time

curves were correlated with fractal dimensions of corresponding
finger-span time curves. We use correlation as a metric for similarity
since an exact relationship is not expected between D for brain
activity and D for ratings, given the extensive transformations that
fMRI data and the vector for which activity is analyzed undergo and,
given that fMRI data are contaminated with background noise arising
from multiple independent sources. We test the hypothesis that brain
regions involved in pain perception should have more similar D-
values to the ratings than regions that are not related to pain. Four
brain regions are selected, based on the results of Baliki et al. (2002),
two areas activated for spontaneous pain and two not related to pain:
medial prefrontal cortex at 18, 60, 12 (x, y, z, in mm in standard brain
space, MNI coordinates www.mrc-cbu.cam.ac.uk/Imaging/, www.bic.
mni.mcgill.ca/cgi/), and anterior cingulate at the level of the genu at
10, 22, 28 are the areas activated with spontaneous pain; while right
and left temporal cortex at 56, —40, 10 and —54, —44, —8 are not
activated with spontaneous pain. In all five back pain patients, we
extracted the time-series of brain activity only at these four locations
and calculated their fractal dimensions. These were then correlated
with pain rating D values.

The brain regions of interest were derived from the analysis for the
larger group of back pain patients (Baliki et al. 2002), where brain
activity related to back pain was determined from the average acti-
vation determined for spontaneous back pain ratings from which
visual-control related activity and surrogate-control related activity
were subtracted. The primary brain activity that survived was located
in the medial prefrontal cortex, extending into the rostral anterior
cingulate, at the level of the genu. At a higher level of analysis,
individual subject brain activations were covaried with the overall
intensity of pain the patients reported at the day of scan. The peaks
identified from this analysis are the coordinates used for regions
specifically involved in spontaneous pain. The two peaks, located in
medial prefrontal cortex and rostral anterior cingulate at the genu,
show a highly significant correlation, » > 0.9, P < 107%, between
brain activity and pain intensity.

RESULTS

Scale-free pain ratings

Examination of the time series generated by the patients
indicates a wide random variability with no obvious sinusoidal
excursions (Fig. 1, A and B). In contrast, thermal stimulus
ratings are “pulse-like” remaining relatively constant in be-
tween the presentation of the painful stimulus (Fig. 1D).

A Back Pain
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FIG. 1. Example pain ratings. Five example ratings from back pain (A) and

postherpetic neuropathy (PHN) (B) patients, healthy subject imagining back
pain (C), and healthy subjects in response to thermal stimulation to the lower
back (D). Pain ratings (vertically shifted for clarity) are plotted at the same
scale (shown by the calibration bar in the bottom right).
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Imagined pain ratings (Fig. 1C) seem intermediate between
thermal pain and patients’ ratings in the amount of fluctuations.
Also observe that the time series for the patients look rougher,
that is, they show more noncyclic fluctuations, or look noisier,
than the curves for the normal subjects. These qualitative
impressions can be formalized by computing and comparing
their fractal dimension D.

Fractal time series exhibit specific properties illustrated in
Fig. 2 for pain ratings. Statistical self-similarity at different
magnifications is one fundamental property. This is shown for
a back pain time series (Fig. 2A), and contrasted to rating of
thermal stimulation (Fig. 2B) where the magnified plots are
dissimilar. A related property is the fact that mean and SD of
fractal time series do not converge to a fixed value (Fig. 2, C
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FIG. 2. Properties of fractal pain ratings. (A) Statistical self-similarity of a
fractal pain rating. A back pain patient’s pain rating as a function of time in
samples (1 sample = 400 ms) is shown at three different scales. The general
time variability pattern is self-similar at all three magnifications. As the
horizontal scale is reduced by a factor of 4, the vertical scale is reduced by a
factor of 4% where a = 0.34, indicating power law scaling with fractal
dimension D = 2 —0.34. The boxes on each plot indicate the ranges in the plot
below. (Upper plot has scale 1000 x 18; middle plot has scale 1000*(1/4) x
18*(1/4)*, and bottom plot has scale 1000*(1/16) x 18*(1/16)*). (B) Pain
rating from thermal stimulation. Magnifying a rating that is minimally fractal
fails to show self-similarity. Scaled as in A, with a = 0.85. Note that vertical
range is extremely dependent on exact horizontal location. (C) Mean does not
converge for fractal pain ratings. Mean of successively longer samples of the
pain rating time series used in A (solid curve). Open symbols show the means
of 10 randomly shuffled surrogates, which quickly converge to a mean. (D)
Excess of variance for fractal pain ratings. Average SD, S, for all nonover-
lapping consecutive sub-samples of size T as a function of 7, for time series in
A (solid symbols). Open symbols show the results of same computation for 10
surrogates created by randomly shuffling the points of the original data series
(surrogate data are so similar that they fall on top of each other). The fractal
pain rating variance does not converge, but continues to increase by a power
law as sample length increases (exponent is 0.64). The surrogates, on the other
hand, quickly converge to a fixed variance or SD.

log10(frequency) log10(frequency)

FIG. 3. Power spectra for the same ratings shown in Fig. 1, presented in the
same vertical order. Frequency units are in cycles per sample, plotted in log
scale. Regression fit lines over the chosen scaling region are also shown
(dashed lines). Numbers by each spectrum indicate the fractal dimension D
derived from the slope 3 of the linear fit of the spectrum.

and D) as more data are included in the calculations. It is
typical, as seen in the figure that the mean continues to drift
and the SD increases as a power law with an exponent given by
its fractal dimension. Shuffling the time series destroys the
fractal properties and renders data that behave as a Gaussian
distributed sample with well-defined mean and SD.

We calculated fractal dimension of the ratings from power
spectra and rescaled range analysis. Figures 3 and 4 show
power spectrum analysis and rescaled range analysis for the
corresponding ratings shown in Fig. 1. Resultant D values are
similar between the two methods of measurement and tend to
be higher in the patients. These figures illustrate the range of
scales at which power law scaling is exhibited by the two
methods. These scale ranges generally correspond between the

A Back Pain B pun
r._.---a‘-;-"
] gt o
@ g et oo, i3
o et s 1E9 e
B 157 =" - P} 1.33° t—"—-’r-\:a'-a.:l-r! e =
=] 2 T e ._-__-r=’“'H._.--"'—. e
D 14— gt TR T g
L g P 1.42 -
”
_..,_I—*r .
b 134 2=
1 2 2 1 2 3

C

138
1.36

log1o(RIS)

1.43° - -
i {_/" one log
1.38. unit
1.34
1 2 3 1 2 3

log1o(T)

FIG. 4. Rescale range analysis plots for the same time series shown in Fig.
1, presented in the same vertical order. The mean ratio of the range (R) to the
SD (S) at different sample sizes (7) is shown in log-log plots. Regression lines
(dashed lines) were computed from the points in the scaling region. Numbers
on each curve indicate fractal dimension D derived from the slope of the (¥5)
points in the scaling region. T is in units of samples.

log1o(z)
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FIG. 5. Distribution of fractal dimension, D, for chronic low back pain
(CLBP) and PHN patients, and for normal healthy subjects imagining pain (IP)
or rating thermal pain (TP). Spread of D-values and fitted normal distribution
for each group is displayed. Bottom panel compares the four data sets by
displaying their mean (triangles) and 99% confidence intervals (whiskers).
ANOVA between the four groups was highly significant (P < 107).

two methods, and seem to be larger for patients’ rating and
smallest for thermal pain ratings (more obvious in time do-
main, Fig. 4D).

Figure 5 shows the distribution of D values for the four
groups studied, based on the rescaled range analysis. In back
pain patients, average fractal dimension D = 1.55 * 0.08
(mean * SD, n = 23); whereas for PHN patients D = 1.42 =
0.11 (n = 58). For ratings in healthy subjects who imagined
ongoing back pain and reported its fluctuations D = 1.28 *
0.09 (n = 21) and for healthy subjects ratings of thermal pain
D = 1.19 £ 0.07 (n = 12; with mean coefficient of the fit
* > 0.99 for all 4 groups). One-way ANOVA showed a highly
significant difference of D across the four groups (back pain,
PHN, imagined pain, thermal pain), F(3,110) = 52.6, P <
107°. All pairwise planned-comparisons also showed signifi-
cant differences, with the smallest difference between imag-
ined pain and thermal pain (F = 8.2, P < 0.007; all other
pairwise comparisons had P < 10~°).

To test the robustness of our results we compare dimensions
determined by the two methods (Rangarajan and Ding 2000).
We examine the difference, AD determined in time domain by
rescale range analysis (D,) minus D determined in frequency
domain by power spectrum (Dy), D, — Dy. The distance from
zero of the distribution of this value is used as a measure of
confidence regarding fractal properties of the ratings. When a
cutoff of two SDs is used, only 5 of the ratings fall outside this
threshold, and the group means and SDs remain unchanged.

When a cutoff of 1 SD is used, then 10 of the 12 thermal pain
ratings are excluded, but >80% of the other ratings remain
below the cutoff. Moreover, the D values for the three groups,
back pain (D = 1.53 = 0.07, n = 16), PHN (D = 1.42 = 0.10,
n = 44), and imagined pain (D = 1.26 = 0.10, n = 15), remain
essentially unchanged and statistically significantly different
from each other.

Correspondence of scaling properties between pain ratings
and brain activity

To test the hypothesis that brain activity in regions involved
in pain perception are involved in the generation of fractal
ratings, we tested the similarity of fractal dimension D of fMRI
brain activity time series to pain ratings. D values of fMRI
activity in medial prefrontal cortex and in cingulate at the level
of the genu were strongly correlated to pain rating fractal
dimensions (r = 0.96, P = 0.008; and r = 0.92, P = 0.02,
respectively). In contrast, D values of fMRI activity in tempo-
ral cortical regions were not related to D of pain ratings (r =
0.37, P = 0.54; and r = 0.16, P = 0.79). Medial prefrontal
cortex and cingulate at the level of the genu are brain regions
activated with spontaneous pain in back pain patients, whereas
activity in the temporal cortical areas are not related to fluc-
tuations in back pain (Baliki et al. 2002). Therefore this
analysis demonstrates correspondence between D for brain
activity in regions involved in ongoing pain of back pain and
D for rating of pain.

DISCUSSION

This study is the first to examine temporal properties of
spontaneous pain. We found that subjective reports of fluctu-
ations of ongoing pain in chronic back pain and PHN possess
dynamic properties that can be characterized with a single
parameter. This parameter, fractal dimension D, indicates that
pain ratings are scale free. That is they have fluctuations at all
time scales within the scaling range studied (Feder 1988). We
also show that D is distinct for the two chronic pain conditions
studied here and cannot be mimicked by normal subjects
imagining pain. In back pain patients where we examined D for
pain ratings and for brain activity, we observe a correspon-
dence between them only for brain regions involved in percep-
tion of ongoing back pain (Baliki et al. 2002), implying that the
scale-free properties of pain variability are a manifestation of
neuronal activity involved in pain perception. These results
therefore demonstrate that time variability of ongoing pain may
be used as a metric for documenting the presence and studying
the properties of chronic pain.

Time varying signals have a Euclidean dimension (E) of 1.
When they fluctuate nonperiodically they can have fractal
dimensions spanning between Euclidean dimensions 1-2. The
more rough their fluctuations the higher their fractal dimen-
sion. A pure random walk, formed by up-down Gaussian
independent steps, would result in D = 1.5. Time series are
said to be “persistent” when the trajectory during a time period
has a higher probability of going in the same direction as in the
previous period. This persistency results in values of 1.0 <
D < 1.5. On the other hand, they are called “anti-persistent”
when a subsequent period is more likely to be in the opposite
direction than in the preceding one, resulting in 1.5 < D < 2.0
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(Feder 1988; Mandelbrot 1982). Thus anti-persistent processes
can be thought of as more space filling than persistent pro-
cesses. It is clear that as time passes, persistent processes on the
average make larger excursions than anti-persistent ones be-
cause of the increased tendency to go in the same direction.
There is a large spread in D computed for different pain
patients. However, back pain patients mainly show anti-per-
sistence, meaning that on the average more intense pain is
followed by weaker pain. PHN patients instead show both
anti-persistent and persistent time series. Healthy subjects
attempting to imagine fluctuations of pain generate the most
persistent ratings, suggesting that normal subjects assume that
pain does not undergo much fluctuation, and these ratings are
most similar to thermal pain ratings, which are also the least
fractal ratings. Given the extensive peripheral and central
re-organization associated with chronic pain (Woolf and Salter
2000), the properties of fluctuations in ongoing pain most
likely reflect the interaction between peripheral and central
processes inducing the pain and the coping mechanisms that
patients develop to deal best with the condition (including use
of analgesics and other medications). From this viewpoint, the
extent to which a given pain rating is anti-persistent may be
interpreted as reflecting the ability of the patient to cope with
the condition. One obvious candidate system that can control
this parameter is the integrity of descending modulatory path-
ways, which provides supraspinal feedback control on spinal
cord nociceptive neurons and limits nociceptive information
transmission cephalad (Fields and Basbaum 1999; Ren and
Dubner 2002). Relative potentiation of descending inhibitory
and facilitatory pathways in different clinical pain conditions
would naturally lead to pain ratings with distinct persistent or
anti-persistent scaling properties. Alternative sources of differ-
ent patterns of fluctuations may be due to the firing character-
istics of nociceptive afferents. It may be possible to distinguish
between central modulatory fluctuations and peripheral contri-
butions by controlling the pain condition by peripherally or
centrally acting analgesics.

It is worthwhile to note that we have been using subjective
pain ratings in various chronic pain conditions as a tool to
study brain activity (Apkarian 1999; Apkarian et al. 2001). To
date, we have asked >100 such patients to rate their ongoing
pain and the vast majority readily comply. Only rarely, in
<5%, do patients insist that their pain is invariant over the time
scale of a few minutes. It is also important to note that the
ratings in normal subjects who attempt to imagine pain are
strongly dependent on the instruction set, and subtle changes in
these instructions may produce different scaling exponents. We
reasoned that because back pain is the most common form of
sustained pain healthy subjects may experience (Deyo and
Weinstein 2001), imagining back pain by healthy subjects had
the best chance of mimicking pain ratings in patients. The
volunteers tested readily complied with the instruction and yet
resulted in ratings that do not match that of back pain patients.
Pain ratings were performed after subjects were off medica-
tions for 24 h. We do not know if this was critical to the
observed results. The influence of analgesics on ratings of
spontaneous pain remains to be systematically studied.

Our use of pain ratings in fMRI studies (Apkarian 1999;
Apkarian et al. 2001) provides neuronal activity based valida-
tion of the approach. It should be mentioned that fractal
fluctuations of fMRI signal has been noted by other groups

(Bullmore et al. 2004; Zarahn et al. 1997). Here we examined
scaling properties of brain activity for regions best related to
the pain ratings and found a tight relationship for D between
pain ratings and brain activity only for brain regions involved
in spontaneous back pain. This is evidence for brain neural
activity involved in pain perception being reflected in the
fractal patterns of ratings generated by the patients. Still, the
number of subjects included in this analysis is small. A larger
study remains to be performed to reveal the relationships
between D across brain areas and pain ratings.

The list of clinically significant pain conditions is long, and
we do not know the extent to which fractal properties can
differentiate between them. Still the approach could be useful
in disentangling malingerers from real chronic pain patients as
well as in assessing efficacy of therapies or medications. We
have only studied pain intensity ratings. One could apply the
same methodology to examine other dimensions of ongoing
pain, such as fluctuations in unpleasantness (affective dimen-
sion). It is possible that the latter may reveal different temporal
dynamical properties. Moreover, we have only studied fractal
properties in the scale of seconds to minutes. The current
analyses suggest that power law scaling may be preserved for
much longer times (clinically more significant scales of weeks
and months), but this remains to be demonstrated. If power law
scaling is preserved at longer times, then the commonly used
metrics for determining pain levels become questionable be-
cause they are all based on the assumption that pain intensity
is a Gaussian process. Thus it is imperative that temporal
variability of spontaneous pain be documented at larger time
scales.

In summary, fractal analysis of pain dynamics over a scale
of minutes reveals that perceived ongoing chronic pain fluctu-
ates as a scale-free process. Patients with back pain, of various
etiologies, show scaling exponents in the anti-persistent range
that may reflect their ability in invoking coping mechanisms to
limit the experienced pain. The PHN pain dynamics shows a
broader distribution, probably indicating different subtypes
(Petersen et al. 2000). We surmise that PHN patients with
persistent exponents have a more limited ability to control their
pain. The ratings in subjects asked to imagine pain indicate that
their expectations do not match reality and that these ratings
more closely match acute pain perception ratings. Therefore
we demonstrate that temporal properties of pain can reveal
novel information with potential mechanistic and clinical sig-
nificance.
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