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Abstract

In this work, we investigate the effectiveness of fusing two novel texture features along with intensity in multimodal
magnetic resonance (MR) images for pediatric brain tumor segmentation and classification. One of the two texture features
involves our Piecewise-Triangular-Prism-Surface-Area (PTPSA) algorithm for fractal feature extraction. The other texture
feature exploits our novel fractional Brownian motion (fBm) framework that combines both fractal and wavelet analyses
for fractalwavelet feature extraction. We exploit three MR image modalities such as T1 (gadolinium-enhanced), T2 and
FLuid-Attenuated Inversion-Recovery (FLAIR), respectively. The extracted features from these multimodality MR
images are fused using Self-Organizing Map (SOM). For a total of 204 T1 contrast-enhanced, T2 and FLAIR MR images
obtained from nine different pediatric patients, our successful tumor segmentation is 100%. Our experimental results sug-
gest that the fusion of fractal, fractalwavelet and intensity features in multimodality MR images offers better tumor seg-
mentation results when compared to that of just fractal and intensity features in single modality MR images. Next, we
exploit a multi-layer feedforward neural network with automated Bayesian regularization to classify the tumor regions
from non-tumor regions. The Receiver Operating Characteristic (ROC) curves are obtained to evaluate tumor classifica-
tion performance. The ROC suggests that at a threshold value of 0.7, the True Positive Fraction (TPF) values range from
75% to 100% for different patients, with the average value of 90%.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Brain tissue and tumor segmentation in MR images has been an active research area [1–3]. In general, the
problem of image segmentation involves clustering of similar feature vectors [4,5]. Extraction of good features
is thus fundamental to successful image segmentation. The segmentation task becomes more challenging when
one wants to derive common decision boundaries on different object types in a set of images. Due to the com-
plex structures of different tissues such as white matter (WM), gray matter (GM) and cerebrospinal fluid
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(CSF) in the brain MR images, extraction of useful features is a demanding task. Intensity is an important
feature in discriminating different tissue types in the brain MR images. However, using intensity feature alone
to segment complex brain tissues and tumor in a single modality MR image has been proved to be insufficient
[2,3,6–8]. One of the advantages of MR image over other medical images is that it is easier to obtain multim-
odality MR images via measuring different independent parameters such as longitudinal relaxation time,
transverse relaxation time or proton density. Depending on different parameters measured, the image contains
different contrast and spectral appearance. Thus, the multimodality MR images provide more information
than single modality image. Consequently, multi-spectral MR image [9,10] offers improved image segmenta-
tion results compared to that in single modality image.

In a study of segmenting cortex gray matter in the brain, the deformable surface algorithms offer better
results [11,12] when compared to the intensity-based algorithms. Zadech and Windham [5] have developed
an automatic method for the adaptive enhancement and unsupervised segmentation of different brain tissues
such as CSF, GM and WM in synthetic MR images. Algorri and Flores-Mangas [13] have also used fuzzy
parameters to segment normal brain tissue. While there are considerable amount of works in the literature
that provide good segmentation results for normal brain tissues [4,5,13–16], the segmentation of the patholog-
ical regions such as tumor and edema in MR images remains a challenging task due to uncertainties associated
with tumor location, shape, size and texture properties. Fletcher-Heath et al. [17] have used Fuzzy c-means
(FCM) clustering technique, followed by knowledge-guided image processing steps to segment the tumor
regions in MR images. In Ref. [17], the authors successfully segment tumor regions in 35 out of a total of
36 slices containing tumor and the volume match between the segmented regions and ground truth regions
ranges from 53% to 90%. However, the technique in Ref. [17] may not be useful to detect small tumors since
it requires the tumor regions to appear in at least three consecutive slices. Liu et al. [18] have developed an
image segmentation and tumor volume measurement method based on the fuzzy-connectedness theory that
requires a prior knowledge of the estimated location of the tumor. Mazzara et al. [19] have used a supervised
k-nearest neighbor (KNN) method and an automatic knowledge-guided (KG) method to segment the brain
tumor in MR images. Compared to the segmentation results generated by physician, the average segmentation
accuracy is 56% and 52% for KNN and KG methods, respectively. Prastawa et al. [20] have developed an
automatic segmentation method that use atlas as geometric prior to segment the tumor as well as edema.
In Ref. [20], the overlap between the segmented tumor region and manually labeled ground truth ranges from
70% to 80%.

The texture features have been explored to characterize and segment the dystrophic muscles and adipose
tissue [21–23]. Lerski et al. [24] have demonstrated a brain tumor MR image analysis technique, while Mah-
moud-Ghoneim et al. [25] have proposed a 3D co-occurrence matrix based tumor texture analysis with
increased specificity and sensitivity. However, in both of their works, the volume of interests needs to be seg-
mented manually. Pachai et al. [26] have proposed a multi-resolution pyramid algorithm to segment multiple
sclerosis lesions in the brain MR image with good morphological accuracy and improved reproducibility com-
pared to the manual segmentation method. Pitiot et al. [27] have presented a texture based MR image segmen-
tation approach with a novel combination of a two-stage hybrid neural classifier. The authors show that their
correct classification result varies from 90% to 98% for caudate nucleus, hippocampus and corpus callosum.
However, the sensitivity and specificity of the system are not discussed.

Among many other texture analysis methods, fractal dimension (FD) analysis is a useful tool in character-
izing textural images and surface roughness [28]. In Ref. [29], the authors exploit FD in quantifying the cor-
tical complexity of the brain in clinical groups. We have also successfully exploited the fractal models in
analyzing brain tumor in MR images [1,30,31]. It has been reported that the dynamics of tumor growth fol-
lows a fractal process [32]. Further, the stochastic fractal Brownian motion (fBm) [33], which offers a frame-
work for integration of fractal and multi-resolution analysis, can successfully describe the tumor
characteristics, etc. [34]. Thus, the fractal analysis combining with multi-resolution analysis (MRA) is a prom-
ising candidate in characterizing the content of an image in general and segmenting the tumor in particular
[1,30,34–36].

In this work, we show that the fusion of our novel fractal features along with intensity values in multimodal
MR images provides better brain tumor segmentation and classification. We exploit the effectiveness of our
two novel fractal and fractalwavelet features to segment and classify tumor regions from non-tumor regions
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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in both single and multimodality pediatric brain MR images. The fractal feature is obtained using our previ-
ously proposed Piecewise-Triangular-Prism-Surface-Area (PTPSA) algorithm [30,31]. The fractalwavelet fea-
ture, on the other hand, is computed using our novel fBm model that integrates both fractal and multi-
resolution wavelet analysis for tumor tissue detection [34,35]. We first normalize the image intensity values
to correct the possible bias in 2D cross-sections of MR images [37,38]. Then, three types of features such
as intensity, fractal and fractalwavelet are extracted from the normalized images. The features are fused
and the segmented tumor clusters are obtained exploiting a Self-Organizing Maps (SOM) neural network.
After the segmentation, the clusters are labeled as tumor or non-tumor segments. These labeled segments
are divided into training and test sets to build a multi-layer feedforward classifier for each of the successfully
segmented patient datasets. Receiver Operating Characteristic (ROC) curve is obtained next to evaluate the
performance of each classifier.

This paper is organized as follows: in Section 2, we introduce the related background and in Section 3, we
discuss the methods and implementation details of the system. The results are presented in Section 4. Section 5
provides the discussion of results. The conclusion and future works are presented in Section 6.

2. Background review

We first discuss the intensity normalization techniques for MR image, and then review the basic concept of
fractal and fractalwavelet features to extract texture information from MR images. We also discuss our rele-
vant novel algorithms for extracting fractal and fractalwavelet features. Next, we discuss the Self-Organizing
Map (SOM) algorithm that clusters these texture and intensity features to segment brain MR images. We fur-
ther present a brief description for a feedforward backpropagation classifier to classify segmented images into
tumor/non-tumor tissue.

2.1. Intensity standardization

One drawback for MR imaging is that there lacks a standard interpretation for the intensity value in MR
image, even within the same protocol for the same body region obtained on the same scanner for the same
patient [37,38]. Therefore, in our work, an intensity normalization technique that standardizes the intensity
value in MR image is necessary for the subsequent feature extraction and tumor segmentation. Nyul et al.
[37] have proposed a two-step intensity standardization technique which transforms the images in a way that
the similar intensity values in the transformed image will have similar tissue meaning. A more recent study of
MR image intensity standardization technique can be found in Ref. [38]. Another drawback of MR imaging is
the intensity inhomogeneity such that the intensity values measured from homogeneous tissue region are not
always uniform. Since the intensity inhomogeneity problem mostly affects the intensity-based image analysis
techniques, we do not consider the intensity inhomogeneity correction in our work. In our work, we have fol-
lowed the approach in Refs. [37,38] for MR intensity normalization with satisfactory results.

2.2. Fractal feature

The concept of fractal is first proposed by Mandelbrot [39] to describe the complex geometry of the objects
in nature. Fractal dimension (FD) is a real number that describes the fractal property of the object. Unlike the
dimensions in Euclidian geometry, FD is not restricted to be an integer; instead, an object’s FD is usually a
real number whose value depends on the property of the object. Different FD values indicate different texture
structures in the image. Usually, the more complex the texture structure is, the higher its FD value will be [30].
The FD has been successfully exploited in different medical image analysis areas such as the evaluation of the
cortical complexity [29] and the detection of small lung tumor [40]. There are several different methods to cal-
culate the FD, such as box-counting, modified box-counting, piecewise modified box-counting and piecewise
triangular prism surface area (PTPSA) [31]. We have successfully investigated the PTPSA method [30,31] to
discriminate the tumor regions from non-tumor regions by their different FD values [31,35] in the single
modality image segmentation. In this work, we exploit the PTPSA algorithm to calculate FD on the multim-
odality image and compare these results with that of using single modality image.
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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In PTPSA algorithm, an image is first divided into several equal-sized rectangular sub-images with each
sub-image has a side length of r. For each of these sub-images, the intensity values of four corner pixels such
as p1, p2, p3 and p4 are measured. Then the magnitudes of these intensity values are considered as the heights
in the third dimension for each corresponding corner pixel. The average intensity value of these four corner
pixels pc is considered as the height in the third dimension for the center pixel of this sub-image. Thus, we can
form four triangular such as ABE, BCE, CDE and DAE as shown in Fig. 1 and the FD is calculated as
Plea
MR
FD ¼ logðSADE þ SABE þ SBCE þ SCDEÞ
log r

; ð1Þ
where S represents the surface area of each triangles and the subscript letters represent the apexes of the
triangles.

2.3. Fractalwavelet feature

Fractalwavelet feature is based on the fractional Brownian motion (fBm) model, which is a technique that
combines both fractal and multi-resolution image decomposition. We have successfully investigated a novel
fBm model to extract multi-resolution fractal features from brain MRI [1,34–36]. The fBm is a part of the
set of 1/f processes, which are the generalization of the ordinary Brownian motion BH(S). The fBm is non-sta-
tionary, zero-mean Gaussian random functions, which are defined as
BH ð0Þ ¼ 0; ð2Þ

BH ðtÞ � BH ðsÞ ¼
1

CðH þ 0:5Þ

Z 0

�1
½ðt � sÞH�0:5 � sH�0:5�dBðsÞ þ

Z 1

0

ðt � sÞH�0:5dBðsÞ
� �

; ð3Þ
where 0 < H < 1 is the Hurst coefficient that characterizes the fBm. t and s represent different observation
times of the process BH, C is the Gamma function.

When the associated correlation function, rBH, is not exclusively a function of the difference observation
times, the fBm is a non-stationary process and can be defined as
rBH ðt; sÞ ¼ EbBH ðtÞBHðsÞc ¼
V H

2
ðjtj2H þ jsj2H � jt � sj2H Þ; 0 < H < 1; ð4Þ
where E[�] is the expected value operator, and,
V H ¼ Cð1� 2HÞ cosðpHÞ
pH

: ð5Þ
The non-stationary property suggests that an fBm may not be associated to a spectrum using a standard spec-
tral density computation for estimating the signal power contents. Although fBm is a non-stationary process,
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Fig. 1. Piecewise-Triangular-Prism-Surface-Area (PTPSA) algorithm.
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its increments are stationary. The stationary property can be observed in fBm’s variance function, which is
defined as
Plea
MR
E jBH ðtÞ � BH ðsÞj2
h i

¼ V H ðt � sÞ2H
; ð6Þ
where VH is defined in Eq. (6). The fBm increments are also self-similar, which means that the following equa-
tion can be satisfied at any scale value of a:
BH ðt þ asÞ � BH ðtÞ ¼ aH BH ðtÞ: ð7Þ

The previous properties of fBm can be extended to multiple dimensions case. For the two-dimensional case, let
Bð~uÞ represent an fBm, where ~u represents the position (ux, uy) of a point in a two-dimensional process satis-
fying the following conditions:

(a) The process is non-stationary if its correlation is not a function of j~u�~vj as follows:
rBH ð~u;~vÞ ¼ E½BH ð~uÞBH ð~vÞ� ¼
V H

2
ðj~uj2H þ j~vj2H � j~u�~vj2H Þ: ð8Þ
(b) The increments of the process DBð~uÞ ¼ Bð~uþ D~uÞ � Bð~uÞ forms a stationary, zero-mean Gaussian pro-
cess and

(c) The variance of the increments DBð~uÞ depends only on the distance Du ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2

x þ Du2
y

q
, such that
E½jDBH ð~uÞj2� / DuH : ð9Þ
The stationary and self-similarity of fBm suggest that the time-frequency signal decomposition techniques
such as multi-resolution analysis (MRA) is a good candidate for fractal signal analysis. Therefore, the fBm
analysis can be performed by estimating H and FD, as follows:
FD ¼ DE þ 1� H ; ð10Þ

where DE is the Euclidean dimension that contains the fBm. Eq. (10) suggests that the successful FD compu-
tation involves estimation of H. We discuss our novel computational modeling for estimating H, and hence
FD, in Section 3.

2.4. The Self-Organizing Maps (SOM) algorithm

In this work, we use Self-Organizing Map (SOM) neural network [41] as the segmentation tool. The SOM
learns to cluster input vectors according to how they are naturally grouped in the input space. In its simplest
form, the map consists of a regular grid unit which learns to represent the statistical data described by model
vectors x 2 Rn, where Rn represents n dimension real space. Each map unit i contains a vector mi ðmi 2 RnÞ
that is used to represent the data. During the training process the model vectors are changed gradually and
finally the map forms an ordered non-linear regression of the model vectors into the data space. At the tth
step of the learning process, a data sample x(t) is presented to the grid. Then the node c is searched for the
best representation of the sample. The unit c and its neighboring units are updated according to the following
learning rule:
miðt þ 1Þ ¼ miðtÞ þ hciðtÞ½xðtÞ � mðtÞ�; ð11Þ
where hci (usually a symmetric, monotonically decreasing function of the distance of units i and c on the map
grid) is the neighboring function expressing how much the unit i is updated when unit c is the winner. This
update process continues for all the data samples. As a result of these repeated updates, the model vectors
of neighboring map units gradually become similar and eventually the whole grid becomes a globally ordered
model vectors. In addition to other advantages of SOM over other clustering approach, the global ordering

property of SOM is attractive. We observe that when we segment a sequence of brain MR images using
SOM, any specific tissue (e.g. GM, WM) or tumor is always grouped into a specific location in the grid. This
helps us to label the tumor correctly and unambiguously.
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2.5. Neural network classifier

Neural network has been widely used for classification of different tissue regions in medical images [42–44].
In this work, we use multi-layer back propagation neural network as the classifier to discriminate the tumor
regions from non-tumor regions. The simplest form of backpropagation algorithm which learns the network’s
weights and biases is updated in the negative direction of the gradient. The objective function of a standard
feedforward neural network is as
Plea
MR
mse ¼ 1

N

XN

i¼1

ðeiÞ2 ¼
1

N

XN

i¼1

ðti � aiÞ2; ð12Þ
where N is the number of sample, ti is the target output, and ai is the network output. Similar to any other
classifier, the standard backpropagation neural network also suffers from over fitting. This over fitting occurs
when the network memorizes the training examples but does not learn to generalize the inputs. To improve the
generalization, we obtain the smallest network weights that is large enough to classify the input data with ade-
quate accuracy [45]. We can achieve this by modifying the objective function as follows:
msireg ¼ c� mseþ ð1� cÞ � msw; ð13Þ

where c is the performance ratio, and
msw ¼ 1

n

Xn

j¼1

w2
j : ð14Þ
The objective function in Eq. (13) helps us to build a small network that does not have enough power to over
fit. However, how well this function performs depends on the choice of the regularization parameters. In this
work, we exploit Bayesian framework [46] to determine the optimal regularization parameters automatically.
The weights and biases of the network are assumed to be random variables with specified distributions. Then
the unknown variances associated with these distributions are used to estimate the regularization parameters.

2.6. The classifier performance curve

The Receiver Operating Characteristics (ROC) curve is used to quantitatively evaluate the performance of the
classifiers [47,48]. From the classifier outputs, we obtain two parameters such as the True Positive Fraction (TPF)
and the False Positive Fraction (FPF), at different threshold values for each classifier. TPF is the proportion of
the segments that are correctly classified as tumor segment by the classifier while FPF is the proportion of the
segments that are incorrectly classified as tumor segment by the classifier. TPF is also known as sensitivity while
FPF quantitatively equals to 1-specificity. An ideal classifier with TPF of 1 and FPF of 0 means that this classifier
can correctly discriminate all the tumor segments from non-tumor segment while never misclassify the non-
tumor segment as the tumor segment. For each classifier, by using the FPF values under different thresholds
as the X-coordinates and the corresponding TPF values as the Y-coordinates, a series of points can be obtained,
each of which corresponds to one TPF–FPF pair under a certain threshold. The ROC curve is then obtained by
connecting all these points. The ROC curve represents the tradeoff between TPF and FPF and describes how well
the classifier can discriminate the tumor regions from non-tumor regions. For a good classifier, the correspond-
ing ROC curve should be close to upper-left corner of the plane wherein TPF ? 1 and FPF ? 0.
3. Methods

The goal in this study is to investigate the effectiveness of fusing our novel fractal-based features along with
intensity features for improved tumor segmentation and classification in multimodal pediatric brain MR
images. In order to satisfy this goal, we propose the following four steps such as: (i) MR image intensity nor-
malization, (ii) feature extraction, (iii) multimodal feature fusion and image segmentation, and (iv) tumor clas-
sification. The corresponding overall algorithm flow diagram is shown in Fig. 2. The implementation details of
the modules are briefly discussed in the following subsections.
se cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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3.1. Image intensity standardization

To alleviate the intensity bias in MR image, an intensity normalization algorithm is necessary as the pre-
processing step. In this project, as mentioned in Section 2.1, we implement a two-step normalization method
[38], wherein the image histograms are modified such that the histograms match a mean histogram obtained
using the training data. After applying this normalization method, the intensity values for the same tissue in
different MR images fall into a very narrow range (ideally, a single value) in the normalized images.

3.2. Feature extraction

After intensity standardization, we extract three features from the normalized MR images such as intensity,
fractal dimension and fractalwavelet. We compute these features on each 2D cross-section of MR images for
all nine patients in our image database. The FD feature is computed using our previously proposed Piecewise-
Triangular-Prism-Surface-Area (PTPSA) algorithm [30,31] while the fractalwavelet feature is obtained using
our novel fBm-based algorithm [34,35] as discussed in Section 2.

3.2.1. PTPSA algorithm

The flow diagram for PTPSA algorithm is shown in Fig. 3. In Fig. 3, we first divide each 2D MR image slice
into 8 � 8 sub-image. The remaining steps follow the derivation in Section 2.2. Note that for PTPSA algo-
rithm, the choice of size of sub-image affects the FD calculation result [31]. Based on our extensive statistical
experimentation on the effect of sub-image size in computing FD using fractal algorithm, we choose 8 � 8 as
the sub-image size that offers the most significant difference in FD values between tumor and non-tumor
regions [31].
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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3.2.2. The fBm variance model and algorithm

In this section, we discuss our novel fBm-variance model [34,35] to estimate H, and hence FD, as we have
mentioned in Section 2.3. We estimate the fractal features through the computation of the variance of detail
coefficients in a multi-resolution decomposition scheme [34]. For an approximation resolution at scale 2j, the
multi-resolution representation of an fBm process in Eq. (3) is given by
Plea
MR
BH ðtÞ ¼ 2j=2
X

n

aj½n�/ð2�jt � nÞ þ
X

j

2�j=2
X

n

ndj½n�wð2�jt � nÞ; ð15Þ
where j = �J, . . . ,1, n = �1, . . . , +1. /(t) is the scaling function, aj[n] and dj[n] are the jth scale approx-
imate and detail coefficients, respectively. The two-dimensional extension of the detail coefficients, at the jth
scale resolution, can be written as [1]
D3
2j ½n;m� ¼ 2�j

Z þ1

�1

Z þ1

�1
BH ðx; yÞw3

2jðx� 2�jn; y � 2�jmÞdxdy; ð16Þ
where w3
2j corresponds to the two-dimensional wavelet associated to the diagonal detail filter. Rewriting Eq.

(16) yields
D3
2j ½~g� ¼ 2�j

Z þ1

�1
BHð~uÞw3

2jð~u� 2�j~gÞd~u; ð17Þ
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where g corresponds to the position [n, m] and w3
2j satisfies the admissibility condition [49],
Plea
MR
Z þ1

�1

Z þ1

�1
w3

2jðx; yÞdxdy ¼ 0: ð18Þ
The variances function of the detail coefficients in Eq. (16) is obtained following a similar process to the con-
tinuous wavelet approach as follows:
E½jD3
2j ½~g�j2� ¼ 2�2j

Z
u

Z
v

w3
2jð~u� 2�j~gÞw3

2jð~v� 2�j~gÞE½Bð~uÞBð~vÞ�d~ud~v: ð19Þ
The variance of the two-dimensional detail signal D3
2j ½~g� can be considered as a power law of the scale 2j2 and

can be used to calculate the Hurst coefficient, H, in a similar way. Thus, we obtain
log2E½jD3
2j ½n;m�j2� ¼ ð2H þ 2Þjþ C2; ð20Þ
where
C2 ¼ log2

V H

2
V w3

2j
ðHÞ: ð21Þ
The H value of the two-dimensional fBm process can be extracted from the slope of the variance as a function
of the order of the resolution scale—j. Finally, FD is obtained using Eq. (10). The corresponding algorithm
implementation is shown in Fig. 4. In order to compute the FD using our fBm variance algorithm in Fig. 4, we
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Iteration number 
reached?

Find the least-square fit line for 
(i,log2(var[D3

2
i])) and compute the 

slope of this line 

i = i +1 

Yes

No

Derive the value of H from the 
slope value 

Fig. 4. The flow diagram for calculating FD of two-dimension fBm process.
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consider three levels of scale decomposition in the MRA. We also consider 8 � 8 sub-image size at the full
resolution of 2D image slice for our fractalwavelet-based FD computation.

3.3. Multimodal feature fusion and tumor segmentation

We exploit Self-Organizing Map (SOM) as our feature fusion and segmentation tool. A single feature, such
as intensity, is not sufficient to discriminate one tissue type from the others in a SOM setup. Further, the inter-
mediate experimental results (not shown here) show that the selection of a threshold in SOM algorithm that
increases the TPF also increases the FPF at the same time if only one single feature is used. To alleviate this
rather intricate problem, we use the combination of two (intensity and fractal) or three (intensity, fractal and
fractalwavelet) features as the input features to the SOM algorithm. The output of the SOM algorithm offers
the segmented clusters. In SOM algorithm, we only need to provide approximate number of clusters since the
algorithm itself can automatically choose the optimal number of clusters as well as the optimal shape of the
grid. This flexibility is useful since it is difficult to know the optimal number of clusters without running the
segmentation algorithm repeatedly. After the segmentation, each segment is labeled as tumor or non-tumor
segments and these labeled segments are then used for classifier training and testing.

3.4. The tumor classification

We investigate a feedforward neural network with automated Bayesian regularization as the classifier to dis-
criminate the tumor from the non-tumor regions. For each segment, the mean values of the three features (inten-
sity, fractal dimension and fractalwavelet) are calculated and these feature values are used as the input vectors to
the classifier. The output of the classifier suggests presence/absence of tumor in a MR image sequence. Specifi-
cally, a classifier output that is close to ‘one’ suggests a tumor segment while the output that is close to ‘zero’ sug-
gests non-tumor segment. In our experiment, we observe that the variance values of all three features for all the
clusters are negligible. Thus, mean values alone sufficiently represent these clusters. To evaluate the classifier per-
formance, the half of the labeled segments is used as the training set while the other half is used as the testing set.
We build a total of nine classifiers, each of which corresponds to the tumor data from nine different patients,
respectively. Finally, ROC curves are investigated to ascertain the classifier performance in our study.

4. Results

We first describe our MR brain image database and then show the tumor segmentation results with fractal-
based features using multiple and single modality MR image. Finally, we describe the tumor classification
results using the segmented images. We also obtain comprehensive classifier performance evaluation using
ROC curves.

4.1. Image database

In this work, our image database includes three image modalities such as gadolinium-enhanced T1, T2 and
FLAIR, respectively. We analyze a total of 204 brain MR tumor images from nine different pediatric patients,
with 68 images for each modality. Summary information of the MR images in our database is shown in Table
1. All of these images are sampled by 1.5 T Siemens Magnetom scanners from Siemens Medical Systems. The
slice gap varies from 4 mm to 5 mm, the field-of-view (FOV) is 210 � 210 mm2 and the size of each of the
image matrix is 256 � 256 pixels, respectively. The scan parameters for T1-weighted image are: TR = 165 ms,
TE = 6 ms, flip angle = 60�; the scan parameters for T2-weighted image are: Turbo Spin Echo, TR = 6630,
TE = 115 ms, 15 echoes per TR.

4.2. Feature extraction results

To evaluate the effectiveness of our novel fractal-based features in discriminating tumor from non-tumor
regions, we compute intensity, fractal dimension and fractalwavelet features on each 2D MR tumor image.
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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Table 1
MR image data statistics

P Tumor type Slice
thickness
(mm)

Number
of
tumor(s)

Number of
image with
visible tumors

T1 T2 FLAIR

Total
number
of images

Tumor
visibility

Contrast
agent

Total
number
of images

Tumor
visibility

Total
number
of images

Tumor
visibility

1 Astrocytoma 4 Single 9 31 Medium Applied 31 Good 31 Medium
2 GBM 5 Multiple 9 29 Good Applied 27 Good 27 Good
3 GBM Single 6 27 Medium Applied 27 Medium 27 Medium
4 BSG Single 9 27 Medium Applied 27 Medium 27 Medium
5 Metastatic tumor Single 6 31 Good Applied 25 Good 25 Good
6 JPA Single 8 27 Medium Applied 27 Good 27 Medium
7 Craniopharyngioma Single 8 25 Good Applied 25 Good 25 Good
8 PXA Single 6 27 Good Applied 25 Good 25 Good
9 Cystic-suprasellar

mass
Single 7 24 Medium Applied 25 Medium 25 Medium

T 68 248 239 239
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We obtain feature plots to observe whether these features help to improve the delineation of the tumor region
from the non-tumor regions. To plot the feature plot, we first divide the image into equal-sized 8 � 8 sub-
images. For each of these sub-images, we calculate the fractal dimension and fractalwavelet features as
described above. We then obtain the normalized mean value of the fractal, fractalwavelet and intensity fea-
tures for the tumor and non-tumor regions for each of the 2D image slices for a particular patient. Thus,
in the feature plot for a specific patient, each data point corresponds to one 2D image slice and the coordinate
values of the data point represent the normalized mean feature values for this image. The data points that cor-
respond to the tumor region are labeled black while those correspond to the non-tumor regions are labeled
white. Our extensive experimentation with database in Table 1 show that in many 2D MR image slices, while
intensity feature alone is useful, adding fractal and/or fractalwavelet to intensity can help to delineate the
tumor region better. For example, Figs. 5 and 6 show T1 images wherein intensity feature alone may be used
to separate tumor form non-tumor tissues. However, addition of fractal and fractalwavelet features may pro-
vide added benefit to delineate tumor regions from that of non-tumor as shown in Figs. 6 and 7, respectively.
On the other hand, due to increased contrast in T2 images, intensity alone appears sufficient to separate tumor
tissues form the non-tumor tissues as shown in Figs. 8–10, respectively. Further, inclusion of fractal and frac-
talwavelet features along with intensity helps in better tumor separation from the non-tumor regions and sub-
sequent tumor segmentation as discussed in the following section. Thus, our analysis with all the single
modality MR images in Table 1 shows that while intensity feature may be useful in many cases, by adding
Fig. 5. (a) One example 2D slice of original T1 image for patient #2 and (b) the fractal vs. intensity normalized mean feature plot for all
nine slices for patient #2 (white points correspond to the non-tumor region, black points correspond to the tumor region).
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Fig. 6. (a) One example 2D slice of original T1 image for patient #7 and (b) the fractal vs. intensity normalized mean feature plot for all
eight slices for patient #7 (white points correspond to the non-tumor region, black points correspond to the tumor region).

Fig. 7. (a) One example 2D slice of original T1 image for patient #6 and (b) the fractalwavelet vs. intensity normalized mean feature plot
for all eight slices for patient #6 (white points correspond to the non-tumor region, black points correspond to the tumor region).

Fig. 8. (a) One example 2D slice of original T2 image for patient #4 and (b) the fractal vs. intensity normalized mean feature plot for all
nine slices for patient #6 (white points correspond to the non-tumor region, black points correspond to the tumor region).
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fractal and/or fractalwavelet as the additional features, one can improve delineation and subsequent segmen-
tation of tumor regions from those of non-tumor regions. Note that we have extensively studied the statistical
significance of fractal features in delineating tumor tissue from that of the non-tumor in [31].
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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Fig. 9. (a) One example 2D slice of original T2 image for patient #2 and (b) the fractal vs. intensity normalized mean feature plot for all
nine slices for patient #2 (white points correspond to the non-tumor region, black points correspond to the tumor region).

Fig. 10. (a) One example 2D slice of original T2 image for patient #6 and (b) the fractalwavelet vs. intensity normalized mean feature plot
for all eight slices for patient #6 (white points correspond to the non-tumor region, black points correspond to the tumor region).
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4.3. Multimodality MR feature fusion and tumor segmentation results

We exploit a SOM algorithm to fuse our extracted features and segment the tumor regions. We compare
the tumor segmentation results of using different combinations of the features in single modality as well as
multimodality MR images. First, we experiment with different feature combinations such as (i) intensity;
(ii) intensity and fractal dimension; and (iii) intensity, fractal dimension and fractalwavelet as the input to
the SOM for single modality MR image segmentation. The tumor segmentation results for an example T1
image slice is shown in Fig. 11, while that for an example T2 image slice is shown in Fig. 12, respectively.
In Fig. 11, the segmentation using intensity alone is not always robust, while the segmentation using fusion
of two (intensity and fractal dimension) or three features (intensity, fractal dimension and fractalwavelet)
offers better results. Note that either two or three feature fusion results for the example T1 image in
Fig. 11 show similar tumor segmentation performance. However, fusion of three features for the example
T2 image in Fig. 12 offers better tumor segmentation than that of two features. Comparing the segmentation
results in T1 and T2 image, we observe that in T2 images, the tumor segments usually capture more tumor
area than those in the T1 images. A summary of the complete segmentation results using single modality
T1 and T2 images as well as a combination of multimodality (T1, T2 and FLAIR) MR images are shown
in Table 2. For single modality images, the successful tumor segmentation rate ranges from 57% to 95%,
depending on different features and image modality combinations. Further, Table 2 suggests that the combi-
nation of three features improves the successful tumor segmentation rate when compared to that of two fea-
tures. Consequently, we only consider the three-feature (intensity, fractal dimension and fractalwavelet) fusion
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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Fig. 11. Tumor segmentation with feature fusion: (a) A 2D T1 image slice from patient #2. Tumor segmentation results using (b) intensity
alone; the entire tumor region cannot be clearly segmented. (c) Intensity and fractal features, all the tumor region are clearly segmented
and (d) intensity, fractal and fractalwavelet, the entire tumor region is clearly segmented.

Fig. 12. Tumor segmentation with feature fusion: (a) A 2D T2 image slice from patient #3. Tumor segmentation results using (b) intensity
and fractal features; the entire tumor region cannot be clearly segmented; and (c) intensity, fractal and fractalwavelet; the entire tumor
region is clearly segmented.
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Table 2
Summary of tumor segmentation results

Patient Single modality Multimodality

T1 T2 T1 + T2 + FLAIR

Intensity
+ fractal

Intensity + fractal
+ fractalwavelet

Intensity
+ fractal

Intensity + fractal
+ fractalwavelet

Intensity + fractal
+ fractalwavelet

1 33% 44% 100% 100% 100%
(3/9) (4/9) (9/9) (9/9) (9/9)

2 55% 55% 78% 89% 100%
(5/9) (5/9) (7/9) (8/9) (9/9)

3 33% 67% 100% 100% 100%
(2/6) (4/6) (6/6) (6/6) (6/6)

4 33% 33% 67% 77% 100%
(3/9) (3/9) (6/9) (7/9) (9/9)

5 83% 100% 100% 100% 100%
(5/6) (6/6) (6/6) (6/6) (6/6)

6 63% 75% 100% 100% 100%
(5/8) (6/8) (8/8) (8/8) (8/8)

7 75% 75% 100% 100% 100%
(6/8) (6/8) (8/8) (8/8) (8/8)

8 100% 100% 67% 100% 100%
(6/6) (6/6) (4/6) (6/6) (6/6)

9 57% 57% 85% 100% 100%
(4/7) (4/7) (6/7) (7/7) (7/7)

Total 57% 64% 88% 95% 100%
(39/68) (44/68) (60/68) (65/68) (68/68)

The numbers in parenthesis represent the number of images that the tumor region can be clearly segmented vs. the total number of image
with visible tumor.
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case for multimodality images. The tumor segmentation results using multimodality images with three-feature
fusion is shown in the last column of Table 2. Overall, using multimodality image with three-feature fusion
significantly improves the tumor segmentation results. For multimodality images, the successful tumor seg-
mentation rates are 100% for all nine patients.

4.4. Tumor classification results

To evaluate the tumor classification performance of our feedforward classifier, we divide the segmented
tumor data into two equal halves for training and testing, as mentioned before. We compare the tumor clas-
sification results for single modality with that for multimodality MR images, respectively. A summary of ROC
curves at three different threshold values for both single modality and multimodality MR images are shown in
Table 3. Note that in single modality cases, we do not build classifiers for three patients wherein our SOM
segmentation does not provide at least five correct tumor segments for all the images with visible tumor for
a particular patient as shown in Table 2. For multimodality image, we construct a total of nine classifiers, each
of which corresponds to one patient. Further, for multimodality case, we only consider the case wherein all
three features are fused. Table 3 shows that the multimodal MR fusion offers the TPF ranging from 75%
to 100% with the average value of 90% at the threshold value of 0.7. These results suggest that fusing features
in multimodality images improves the tumor detection rate when compared to that of using single modality
images.

5. Discussion

The goal in this study is to investigate the effectiveness of fusing our novel fractal-based features [30,34]
along with intensity feature for improved tumor segmentation and classification in multimodality pediatric
brain MR images. One of the two fractal-based techniques involves our PTPSA algorithm for FD feature
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
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Table 3
Single modality and multimodality images: True Positive Fraction (TPF) and False Positive Fraction (FPF) values at different thresholds
for the classifiers

P Threshold Single modality Multimodality

T1 T2 T1 + T2 + FLAIR

Intensity
+ fractal

Intensity + fractal
+ fractalwavelet

Intensity
+ fractal

Intensity + fractal
+ fractalwavelet

Intensity + fractal
+ fractalwavelet

TPF FPF TPF FPF TPF FPF TPF FPF TPF FPF

1 0.5 No classifier is built due to lack of segmented images 1 0 0.67 0 0.8 0.02
0.7 1 0 0.67 0 0.8 0.02
0.9 1 0 0.67 0 0.8 0.02

2 0.5 1 0 0.67 0 0.4 0 0.33 0.09 1 0.15
0.7 0.5 0 0.67 0 0.4 0 0.33 0.09 1 0.13
0.9 0.5 0 0.67 0 0.4 0 0 0.09 1 0.13

3 0.5 No classifier is built due to lack of segmented images 1 0 1 0.03 0.8 0.07
0.7 1 0 1 0.03 0.8 0.07
0.9 1 0 0.67 0.03 0.8 0.05

4 0.5 No classifier is built due to lack of segmented images 0.5 0 0.67 0.22 0.75 0.06
0.7 0.5 0 0.67 0.13 0.75 0.06
0.9 0 0 0.67 0 0.75 0.03

5 0.5 0 0.09 0.67 0.42 0.67 0.09 0.67 0.06 1 0
0.7 0 0.09 0.67 0.42 0.67 0.09 0.67 0.06 1 0
0.9 0 0.09 0.67 0.42 0.67 0.09 0.67 0.06 1 0

6 0.5 1 0.14 0 0.11 0 0 0 0.02 0.75 0.18
0.7 1 0.14 0 0.11 0 0 0 0.02 0.75 0.18
0.9 1 0.14 0 0.11 0 0 0 0.02 0.5 0.18

7 0.5 1 0.15 0.33 0.07 1 0 1 0 1 0.22
0.7 0.67 0.15 0.33 0.07 1 0 1 0 1 0.22
0.9 0.67 0.15 0.33 0.07 1 0 1 0 1 0.22

8 0.5 0.67 0 0.33 0 1 0.03 0.67 0 1 0.03
0.7 0.67 0 0.33 0 1 0.03 0.67 0 1 0.03
0.9 0.67 0 0.33 0 1 0.03 0.67 0 1 0

9 0.5 0 0 0.5 0.17 1 0.03 0.5 0 1 0
0.7 0 0 0.5 0.17 1 0.03 0.5 0 1 0
0.9 0 0 0.5 0.17 1 0.03 0.5 0 1 0
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extraction. The other method exploits our novel fBm framework that combines both fractal and wavelet anal-
yses for fractalwavelet feature extraction. For fractalwavelet modeling, we consider Daubechies’ basis wavelet
with three levels of decomposition. The choice of wavelet bases and the level of decomposition depends on our
extensive experimentation that offers better tumor discrimination in FD values [35]. Further, for both fractal
and fractalwavelet features in full scale 2D image slices, we choose the sub-image size of 8 � 8. The choice of
sub-image size in this study is based on our extensive statistical analyses performed on the effect of sub-image
size in fractal-based FD values [31].

Intensity is an important feature for automatic tumor detection. However, our study as well as previous
works [3,6,8,50] show that in many brain MR image analysis examples, intensity alone is not sufficient to offer
satisfactory segmentation results. We analyze a total of 204 multimodal MR images from nine different
patients for tumor segmentation. These MR images consist of three modalities such as gadolinium-enhanced
T1, T2 and FLAIR, with each of the modality containing visible tumor in 68 image slices. We first experiment
with different fusion combinations of three features such as intensity, fractal dimension and fractalwavelet in a
SOM network to segment the tumor regions. We observe that when segmented with single modality image, the
T2 images offer higher percentage of successful tumor segmentation rate than the T1 images. However, the
cluster purity (how much non-tumor region is clustered with the tumor segment) in T1 is better than that
in T2. The reason is that the tumor appears bright in most of the T2 images in our image database and, there-
fore, is easily segmented with the tissues that also appear bright such as CSF. We also find that any single
feature may not be sufficient to obtain a clear decision boundary between tumor and non-tumor tissues. Thus,
Please cite this article in press as: Khan M. Iftekharuddin et al., Fractal-based brain tumor detection in multimodal
MRI, Appl. Math. Comput. (2008), doi:10.1016/j.amc.2007.10.063



Khan M. Iftekharuddin et al. / Applied Mathematics and Computation xxx (2008) xxx–xxx 17

ARTICLE IN PRESS
SOM-based fusion of texture features such as fractal and fractalwavelet along with intensity significantly
improves tumor segmentation results for single modality MR images studied in this work. By exploiting fused
features in multimodality MR image, 100% tumor segmentation is achieved for all nine patients in our data-
base. Note that for multimodality image fusion, image registration may be an issue in general. However, in
this study, each of the classifiers is generated using the multimodality image data from a single patient at a
time. Further, the fractal- and fractalwavelet features are both region-based image characteristics, which make
the segmentation less sensitive to spatial differences across the modalities. Thus, image registration is not nec-
essary for our current feature fusion approach using SOM.

We investigate automated tumor classification using a feedforward classifier. We label the segmented
tumor images and divide the labeled segments into training and test datasets. These two datasets are used
as input vectors to train and test a feed-forward neural network classifier, respectively. We also exploit tech-
niques for improving generalization of the feedforward classifier. In brain MR images, the pixel intensity and
fractal values of different tissues do not strictly fall into a narrow range. Thus, memorizing the range for the
previous training samples is misleading for classifying the future inputs. Consequently, improving generaliza-
tion is important in the tumor classification applications. Comparing tumor classification performance, mul-
timodality MR images offer better classification results over single modality MR images. We perform
extensive classifier performance evaluation using ROC curves. We validate our automated tumor classifica-
tion results by dividing the tumor segment data into equal halves for training and testing, respectively. Over-
all, when using multimodality image with fused features, at a threshold of 0.7, the TPF for all the nine
patients investigated ranges from 75% to 100%, with average value of about 90%, while the FPF remains
small (<8%) for all nine patients, with the average value of about 1%. This 90% average true tumor classi-
fication rate using our fractal-based techniques is either comparable or better than relevant works reported in
the literatures [17,20,27,51].

6. Conclusion and future work

In this work, we exploit the effectiveness of fusing two novel fractal-based features with intensity values
to segment and classify tumor regions from non-tumor regions in both single modality and multimodality
pediatric brain MR images. Our single modality-based technique is useful for the patients wherein multim-
odality MR image data may not be available. For multimodality MR images, our simulation results show
the feature fusion of two novel fractal-based features along with intensity values offer excellent tumor seg-
mentation and classification results when compared to intensity-based segmentation method in single
modality MR image.

In the past decade, the fidelity and resolution of medical imaging have experienced dramatic increase [52].
The large number of medical images in modern medical examinations and the relative shortage of the radiol-
ogists demand effective tools for computer aided brain image segmentation. The brain tumor segmentation
and classification technique developed in this study can be used to scan and ‘flag’ potential tumor in 2D slices
from huge number of MR images in a typical brain tumor study. Once the classifiers are trained using our
fractal-based technique, these classifiers can then be used to filter out non-suspecting brain scans as well as
to point out suspicious regions that have similar property as the tumor regions. The radiologists then may
spend time on selected brain scans that are ‘flagged’ by our system. Most of the human interactions time
required for this technique such as image intensity standardization, image segmentation, manual labeling of
the segments and the classifier training can all be done off-line. The approximate time needed to build a trained
classifier for a single patient is about 30 min on a Pentium4 computer with 256 MB of memory. Once the clas-
sifier is trained, the subsequent tumor classification task is fully automated.

In order to claim a clinically robust classifier, we need to further improve our algorithm to make it less
patient-dependent. This will require us to exploit more effective feature extraction, clustering and classification
algorithms. In this research, we consider only clearly visible tumor in our pediatric brain MR image dataset.
We need to work with hard-to-detect tumor cases in our dataset. Further, a careful observation on the seg-
mented tumor results reveals that our existing feature vectors may not be sufficient to discriminate multiple
types of brain tissues such as white matter, gray matter, CSF and skull from solid tumor and edema. Thus,
we plan to exploit additional discriminating features for tumor and multi-tissue classification.
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