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Abstract. The purpose of this study is to discuss existing
fractal-based algorithms and propose novel improvements of
these algorithms to identify tumors in brain magnetic-response
(MR) images. Considerable research has been pursued on frac-
tal geometry in various aspects of image analysis and pat-
tern recognition. Magnetic-resonance images typically have
a degree of noise and randomness associated with the natu-
ral random nature of structure. Thus, fractal analysis is ap-
propriate for MR image analysis. For tumor detection, we
describe existing fractal-based techniques and propose three
modified algorithms using fractal analysis models. For each
new method, the brain MR images are divided into a number of
pieces. The first method involves thresholding the pixel inten-
sity values; hence, we call the technique piecewise-threshold-
box-counting (PTBC) method. For the subsequent methods,
the intensity is treated as the third dimension. We implement
the improved piecewise-modified-box-counting (PMBC) and
piecewise-triangular-prism-surface-area (PTPSA) methods,
respectively. With the PTBC method, we find the differences
in intensity histogram and fractal dimension between normal
and tumor images. Using the PMBC and PTPSA methods, we
may detect and locate the tumor in the brain MR images more
accurately. Thus, the novel techniques proposed herein offer
satisfactory tumor identification.

Key words: MRI – Brain tumor – Fractal dimension – Cu-
mulative histogram – Image recognition

1. Introduction

The fractal concept developed by Mandelbrot [1], who coined
the term “fractal” from the Latin “fractus,” provides a useful
tool for explaining a variety of naturally occurring phenom-
ena. A fractal is an irregular geometric object with an infinite
nesting of structure at all scales. Fractal objects can be found
everywhere in nature, such as in coastlines, fern trees, snow
flakes, clouds, mountains, and bacteria. Some of the most im-
portant properties of fractals are self-similarity, chaos, and
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non-integer fractal dimension (FD). Fractals are self-similar,
which means that structures are repeated at different scales
of size. The fractal dimension gives a quantitative measure of
self-similarity and scaling.

A considerable number of applications using fractal ge-
ometry have been studied in many areas in the past. The FD
analysis of objects has been applied in various application
areas. The FD analysis method has been successful in identi-
fying corn roots stressed by nitrogen fertilizer [2], steer body
temperature fluctuations in hot and cool chambers [2], mea-
suring textural images [3] and surface roughness [3]. Medical
images typically have a degree of randomness associated with
the natural random nature of structure. The fractal model has
also been proved to be useful in analyzing a wide variety of
medical images. The effects of system noise and modulation-
transfer function on FD were explored to measure of struc-
tural bone strength using a hand phantom [5]. Osman et al.
[6] analyzed FD of trabecular bone to evaluate its potential
structure. Other studies successfully used FD to detect micro-
calcifications in mammograms [7], predict osseous changes in
ankle fractures [8], diagnose small peripheral lung tumors [9],
and distinguish breast tumors in digitized mammograms [10].
The studies have also shown that the changes in the fractal
dimension value reflect alterations of structural properties.

Brain magnetic resonance images (MRI) are candidates
for characterization using fractal analysis because of their
highly complex structure [11]. Bru et al. [12] analyzed the
cultivated typical brain-tumor contour cell FD dynamically
and morphologically. Penn et al. [13] used a one-dimensional
box-counting method to measure the contour of the tumor
cell. The user specifies a rectangular region of interest (ROI)
around the mass and the algorithm generates a segmenta-
tion zone from the ROI. Fractal models are constructed on
multiple-threshold-intensity contours within the segmentation
zone. In this research, we propose three new FD analysis algo-
rithms: piecewise-threshold box-counting (PTBC), piecewise-
modified box-counting (PMBC), and piecewise-triangular-
prism surface-area (PTPSA) to detect tumors in brain MR
images based in two- and three-dimensional spaces.
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2. Background on fractal geometry

2.1. Concept of fractal

Euclidean geometry describes points, lines, planes, and cubes.
Euclidean objects are composed of an integer dimension. It is
known that a line has the dimension of one because there is
only one way to move on a line. Two-dimensional figures like
squares or circles have two directions in which to move, and
three-dimensional objects like cubes have three directions to
move. Mandelbrot [1] used the term “topological dimension”
to describe these shapes. The Euclidean dimensions may not
adequately describe the morphology and behavior of the com-
plex objects and relationships that are found in nature. The
fractal theory developed by Mandelbrot is based, in part, on
the work of mathematicians Hausdorff and Besicovitch [14].
The Hausdorff–Besicovitch dimension, DH is defined as:

DH = lim
r→0+

lnN

ln 1/r
, (1)

where N is the number of elements of the box size, r, re-
quired to form a cover of the object. Mandelbrot [1] defines a
fractal as a set for which the Hausdorff–Besicovich dimension
strictly exceeds the topological dimension. Fractals are used
to characterize, explain, and model complex objects in nature
and artificial objects [1]. Fractal geometry describes objects in
non-integer dimension. While a straight line has a dimension
of exactly one, a fractal curve (e.g., a Koch curve or a Sierpin-
ski triangle) may have a dimension between one and two. All
fractal objects share the following three characteristics [1]:

a. Self-resemblance: When the fractal objects are observed
closely, their self-similar nature becomes obvious. Self-
similar means that any portion of the object would appear
identical to the whole object.

b. Chaotic and very complex: The apparent unpredictable be-
havior of fractal is due to its sensitivity to initial conditions.

c. Non-integer fractal dimension: The property of fractal self-
similarity can be measured quantitatively with fractal di-
mension.

2.2. Fractal dimension

The fractal dimension can be defined as the exponent of the
number of self-similar pieces, N , with magnification factor,
1/r, into which a figure may be broken. The equation for FD
is as follows:

FD =
ln (number of self-similar pieces)

ln (magnification factor)
=

lnN

ln(1/r)
(2)

The FD is a non-integer value in contrast to objects that
lie strictly in Euclidean space. A fractal curve has a fractal di-
mension between a straight line and a plane (1 < FD < 2),
while a fractal surface has a dimension between a plane and
three-dimensional space (2 < FD < 3). The fractal dimen-
sion characterizes an object with a dimensionality greater than
its topographical dimension.

2.2.1. Fractal dimension measurement

Hausdorff [14] suggests one way to generalize the notion of
dimension. The idea of generalization involves measuring the
same object with different units of measurement. The measure
is called the topological dimension of a space. A topological
property of an entity is one that remains invariant under contin-
uous one-to-one transformations. Throughout such processes,
the topological dimension does not change. A line segment
has a topological dimension of one. In each step, we reduce
the image size by r in each spatial direction, thus, its measure
will increase to N = (1/r)D times the original, where r is the
magnification factor, N is the number of self-similar pieces,
and FD is the fractal dimension as given in Eq. 1.

2.2.2. Methods of estimating fractal dimension

The concept of self-similarity can be used to estimate the FD.
There are a wide variety of computer algorithms [1, 3, 13] for
estimating the FD of a structure, such as the box-counting
(BC), modified-box-counting (MBC), fractional-Brownian-
motion, and triangular-prism-surface-area methods. The algo-
rithm for box counting estimates how many boxes are taken
up by the fractal structure. An arbitrary grid is placed over the
structure to be measured, and the number of boxes in the grid
that are filled by the fractal structure is counted.

Box-counting method
The box-counting principle [1] is based on counting the num-
ber of boxes having side length r needed to cover the surface
of a fractal object and the number of grid boxes, N , occupied
by one or more pixels of the image. Thus, the box-counting
procedure is mainly defined by two parameters: the selection
of r and the range of r. Since a digitized image consists of a
finite set of points, we have an upper limit (image size) and
lower limit (pixel unit). The box size and the number of boxes
counted can only be an integer. Some research [13] recom-
mends using 2, 4, 8, 16, . . . , 2n pixels as box sizes, r, to give
a uniform spread of observations on the independent variable
during the log-log least square regression. The FD of the frac-
tal object is estimated by the slope of points (log N versus
log 1/r), which normally lies on a straight line.

Modified box-counting method for measuring surface
fractal dimension
The BC approach is suitable for one-dimensional fractal cal-
culation for objects, such as Koch curves, coastlines, and even
speech-wave graphs. However, the BC method may not be
suitable for two-dimensional images, such as clouds, rugged
surfaces, and medical images. A different method, namely,
modified box counting is proposed by Sarkar et al. [3] to es-
timate fractal dimension in rough images. In this method, the
image of size M × M pixels is scaled down to a size r × r,
where M/2 ≥ r > 1 and r is an integer. Consider the image
i(x, y) as a two-dimensional plane and the pixel intensity r′
as the height above a plane. Then the intensity surface of the
image can be viewed as a rugged surface, as shown in Fig. 1.
Thus, image i(x, y) is partitioned into grids of size r × r, and
on each grid there is a column of boxes of size r × r × r′. Fig-
ure 1 shows that r = r′ = 3. Assume that the maximum and
minimum gray levels of the image i(x, y) in (i, j)th grid fall
in box numbers k and l, respectively. Then nr(i, j) = k−l+1
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Fig. 1. Determination of Nr for modified box-counting method [3]

Fig. 2. Triangular-prism-surface-area method. The p1, p2, p3, and p4
are the grayscale elevation values at box corner, pc is the average of
corner values. ABE, BCE, CDE, and DAE are four triangles

is the contribution of Nr in the (i, j)th grid. The contribution
of Nr in Fig. 1 is nr(i, j) = 3−1+1. The contributions from
all the grids using the equation

Nr =
∑
i,j

nr(i, j), (3)

where Nris computed for different values of the square of
size r. The FD of an image is calculated from the slope of the
linear regression line obtained when the horizontal axis, and
the vertical axis are taken as log 1/r and log Nr. Sarkar et al.
[3] indicates that this method offers a better approximation to
the boxes intersecting the image-intensity surface. The basic
box-counting method does not cover the image surface as well
and, hence, cannot capture the fractal dimension for a rough-
textured surface.

Triangular-prism-surface-area procedure
The triangular-prism-surface-area (TPSA) method is proposed
by Clarke [15]. The method uses the grayscale elevation values
at the corners of a box (p1, p2, p3, and p4), and the average
value of the corners as center elevation value (pc) forms four
triangles (ABE, BCE, CDE, and DAE), as shown in Fig. 2.
By repeating this calculation for different box sizes, r, the
logarithms of surface areas of the top triangular surfaces versus
the logarithms of the box sizes is calculated to obtain the slope
(FD).

Fractional-Brownian-motion model
As described by Mandelbrot and Van Ness [16], fractional-
Brownian-motion (FBM) is a statistically self-affine fractal,
which is an extension of the concept of Brownian motion.

Fractional Brownian motion regards rough surfaces as the re-
sult of random walks. An intensity surface of medical images
may also be viewed as the end result of a random walk. The
fractional-Brownian-motion model may be used for the anal-
ysis of medical images. Mandelbrot and Van Ness [16] define
the FBM as nonstationary self-affine random process given by
the equation

BH(t, ω) − BH(0, ω)

=
1

Γ (H + 1
2 )

{∫ 0

−∞
[(t − s)(H−1/2)

−(−s)(H−1/2)]dBH(s, ω)

+
∫ t

0
(t − s)(H−1/2)dBH(s, ω)

}
, (4)

where BH is reduced fractional Brownian motion, H is self-
similar parameter in the range 0 < H < 1, t is time (−∞ <
t < ∞), and ω is the experimental outcome. When H is 0,
FBM is a well-known Brownian motion process. The Hurst
coefficient H quantifies the roughness of the curves BH(t, ω).
The curve BH(t, ω) is very rough if H = 0.01, while for
H = 0.99, the curve is very smooth. The fractal dimension is
related to the Hurst coefficient H by the equation,

D = E + 1 − H. (5)

The parameter E + 1 is the Euclidean dimension of the space
of the fractal.

2.2.3. Example: One-dimensional FD calculation

We consider the fractal geometry for a Koch curve to
demonstrate the BC algorithm. We use box sizes, r, of
13, 11, 9, 7, 5, and 3 pixels, respectively, to map onto the
Koch curve. The corresponding occupied box numbers, N ,
are 54, 65, 88, 137, 196, and 319, respectively. A linear re-
gression of the log N versus log 1/r yields the slope (FD) of
1.244 and correlation coefficient of 0.993, respectively. The
estimated error of the fractal dimension is 1.37%. The high
value of the correlation coefficient indicates good linear fit
of the data. For the next example, we use box sizes, r, of
13, 11, 9, 7, 5, and 3 pixels, respectively, to map onto the Sier-
pinski triangle. The corresponding occupied box numbers, N ,
are 69, 94, 142, 188, 326, and 711, respectively. A linear re-
gression of the log N versus log 1/r yields the FD of 1.565,
and correlation coefficient of 0.998, respectively. The esti-
mated error of the fractal dimension is 1.26%. Thus, the ac-
ceptable accuracy of the box-counting method motivates us
to use BC as the basis model for subsequent development of
PTBC, PMBC, and PTPSA methods, respectively.

3. Fractal dimension algorithms

3.1. System environment

The fractal image-analysis program is developed in C on a
Unix operating system. The program possesses a high degree
of portability to various platforms. The source code may be
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complied with the GNU gcc-compiler. The fractal image anal-
ysis is done either on entire image or on a selected portion of
the image. The digitized image is first scanned from left to
right, and from top to bottom to find the count number (N) in
the response box size (r). The box sizes in this program are
3, 5, 7, 9, 11, and 13 pixels, respectively. The FD is estimated
using a least-square-regression method to find the straight line
that is fitted to the points of log N versus log 1/r.

3.2. Algorithm flow charts

For fractal image analysis of MR brain images, we pro-
pose three different algorithms. For these methods, the brain
MR images are divided into a number of pieces. The first
method involves thresholding the pixel intensity values, and
hence, we call the technique the piecewise-threshold-box-
counting method. In the second and third methods, the in-
tensity is treated as the third dimension. We then proceed
to implement the improved piecewise-modified-box-counting
and piecewise-triangular-prism-surface-area methods, respec-
tively. Before describing the details of the algorithms, we first
explain the key step that is common to all procedures. The
first step in all three algorithms is to divide the image into a
number of pieces.

In general, a tumor only occupies a small portion in the MR
image. Hence, a tumor in the MR brain image may be detected
and located more accurately if the image is divided into small
pieces. The size of two images, such as grayscale cloud and
MR brain images, used in our study are both 256 × 256. The
box sizes used for box-counting method are 3, 5, 7, 9, 11, and
13 pixels in this program. In order to obtain good results, the
test-image size must be twice the largest box size in the box-
counting method. Since the largest box size is 13 × 13 pixels,
the maximum size that each of the images can be divided into
is 32 × 32 pixels. Thus, we divide our test images into 8 × 8
pieces maximum. We also test the developed algorithms using
4 × 4, and 2 × 2 divisions for comparison purposes.

3.2.1. The PTBC algorithm

The algorithm for PTBC is shown in Fig. 3.As shown, the next
step followed by the image division is intensity thresholding
at different intensity range bins. The histogram of grayscale
pixel intensities may be used to identify the logical threshold
period values, such as 32, 64, or 128. Since the BC method
is inherently suitable for one-dimensional FD estimation, the
intensity values in an image are not appropriately handled in a
regular box-counting algorithm. Thus, it is necessary to divide
the image intensity into different histogram bins for each of
the subimages in addition to dividing the images into subim-
ages. Subsequently, by using the box-counting algorithm, we
obtain the FD for each subimage at different intensity bins.
We then obtain the cumulative histogram of intensity bins for
each of the subimages. The final step is to plot an FD versus
a cumulative histogram for each divided subimage of the test
and normal images.

3.2.2. The PMBC and PTPSA algorithms

The algorithms for the PMBC and PTPSA methods are shown
in Fig. 4. Since the PMBC and PTPSA methods treat intensity

YeN

No

Ye

Plot sub-image’s FD versus cumulative
histogram

Is it the last
threshold period?

Last
sub

Calculate FD using ln(N)/ln(1/r)

Find cumulative
histogram

Count the occupied box number (N)
of box size (r)

Histogram the sub-images
Intensity

Load .pgm MR image

Divide the image into sub-images

Divide the sub-images into different
Intensity period

Fig. 3. The PTBC algorithm

as the third dimension, it is not necessary to threshold the
intensity in these two methods. After we first load the MR
image, we can calculate the image FD either for whole image
or for the divided subimages. (However, as described earlier,
our PMBC and PTPSA algorithms are more sensitive if the
image is divided into subimages. This is due to the fact that
the tumor only occupies a few pixels in the whole MR image.)
We then compare the FD for the normal MR image to that
of the tumor MR image for each subimage to detect a tumor.
Thus, we may identify the tumor and its position in the divided
image by using either the PMBC or PTPSA method.

4. Results and discussion

In this section we describe the performance of the developed
algorithms, which are applied to two different types of images.

4.1. Cloud images

The first type of image is the cloud images with
known fractal dimensions that are downloaded from
http://www.edv.agrar.tu-muenchen.de/dvs/idolon/idolonhtml
/artfrac.html. The images are Brownian surface and are
generated with different seed of a random number generator
and known fractal dimension. The cloud images are shown
in Fig. 5a, 5b, and 5c with known FDs of 2.3, 2.5, and 2.8,
respectively. The simple BC algorithm, when applied to the
one-dimensional images, such as a Koch curve, provides sat-
isfactory results. However, when the same method is applied
to the two- and three-dimensional images, such as the cloud
image, the results are unsatisfactory. The average calculated
FD using a BC algorithm for all three cloud images in Fig. 5
are obtained as 2.034. The FD results for the cases, even when
the images are divided into 4 × 4 or 8 × 8 subimages, are all
2.079. Thus, the BC algorithm is not suitable for identifying
the differences of two- and higher-dimensional images. The
average FD for these three cloud images using the PTBC,
PMBC, and PTPSA algorithms, respectively, are shown in
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Fig. 4. PMBC (left) and PTPSA (right) algorithms

Table 1. Table 2 shows the error in average FD calculations
for PTBC, PMBC, and PTPSA methods, respectively. From
the results in Tables 1 and 2, we infer that the PMBC and
PTPSA methods may be more suitable for further estimating
three-dimensional FD of rugged surfaces, such as clouds and
brain MR images.

4.2. MR brain-tumor image

The second type of image consists of two groups of MR im-
ages. The first group of the brain MR images are downloaded

from the website http://www.med.harvard.edu/AANLIB.
Three normal brain MR images are selected as the reference
images, as shown in the first row of Fig. 6a. Since we do not
have access to MR images with a progressive history of the
patient’s tumors, two types of tumor are extracted from tumor
MRI and embedded into the normal images. These type-1 and
type-2 tumor images are also shown in the second and third
rows of Fig. 6a. Thus, the images in Fig. 6a provide us with
a synthetic reference for preliminary testing of our PTBC,
PMBC, and PTPSA algorithms to detect a tumor in the brain.
The second group of MR images is obtained from a tutorial
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a b c

Fig. 5a–c. Three cloud image examples with known FD of 2.3, 2.5, and 2.8, respectively

   
a b

Fig. 6. a Embedded tumor MR images: normal. (First row) m35, m40, and m45, with type-1 tumor; (second row) m35b, m40b, and m45b, with
type-2 tumor; (third row) m35w, m40w, and m45w; b The real tumor MR images selected from ACR; (first column) without tumor; (second
column) with tumor

CD of the American College of Radiology (ACR) real ACR
brain MR images that contains intrinsic tumors in patients, as
shown in Fig. 6b. The MR images with and without tumors
are shown in the first and second columns, respectively, of
Fig. 6b. The images in Fig. 6b offer us realistic verification of
the tumor-detection performance of our algorithms.

MR image with embedded tumor
We apply our developed algorithms on the first group of MR
images in Fig. 6a. We test the images with different combina-
tions of subimage sizes, such as 2 × 2, 4 × 4, and 8 × 8 and

the pixel intensity threshold values of 128, 64, and 32. Our
preliminary test results with PTBC algorithms show that the
combination of threshold value 32 and subimage size 2 × 2
offers a recognizable difference between the images with tu-
mor in Fig. 7a and without tumor in Fig. 7b and c, respectively.
The cumulative histogram versus FD plots of the normal and
tumor images show subtle differences in position (1, 1). This
indicates that there are changes between the original and test
MR images in the fourth quadrant. However, the PTBC algo-
rithm only identifies the possible image quadrant(s) wherein a
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a b c

Fig. 7a–c. Comparison of FD versus cumulative histogram using PTBC algorithm for MRI without tumor (m35) and type-1 tumor (m35b) and
type-2 tumor (m35w), respectively

possible tumor may exist. We are still unable to locate the exact
position of the tumor within the quadrant(s). Additionally, the
changes in FD for each threshold period are not significantly
different, since the changes vary only less than 2% for the cu-
mulative histogram and less than 6% for the FD, respectively.
Thus, the PTBC method may be improved further.

Since the PMBC and PTPSA algorithms consider the pixel
intensity as the height above a plane, the intensity surface
of MR images can be viewed as a rugged surface. It is not
necessary to threshold the grayscale value in the PMBC and
PTPSA algorithms. We first compare the difference in FD for
the subimages divided into 4×4 and 8×8 pieces, respectively.

Table 1.The estimation of average fractal dimensions of cloud images
in Fig. 5

Fractal Cloud image #1 Cloud image #2 Cloud image #3

methods D = 2.3 D = 2.5 D = 2.8
PTBC 2.079 2.079 2.079

PMBC 2.45 2.56 2.70

PTPSA 2.63 2.88 3.11

Table 2. The estimation of the percent error in average fractal dimen-
sion for cloud images in Fig. 5

Fractal Cloud image #1 Cloud image #2 Cloud image #3

methods % Error % Error % Error

PTBC 9.6 16.84 25.75

PMBC 6.5 2.4 −3.6

PTPSA 14.4 15.2 11.1

The FD differences between normal and tumor images range
between 0–0.06 and 0.04–0.457 for different 4 × 4 and 8 × 8
subimages, respectively. Further, some of the test images fail
to show the presence of a tumor due to an insufficient number
of image subdivisions. Thus, a larger number of image sub-
divisions is desirable to locate the smaller tumors accurately.
A comparison between the PMBC and PTPSA algorithms is
shown in Fig. 8. The range of the FD differences in tumor pix-
els using PMBC is 0.017–0.314, while those using PTPSA lie
between 0.012–0.10. In Fig. 8a, the first column shows type-1
tumor images, the second column shows the FD difference be-
tween the reference images (as shown in the first row of Fig. 6a)
and the type-1 tumor images using PMBC. The fourth column
shows type-2 tumor images, and the third column shows FD
difference between the reference images and the type-2 tumor
images using PMBC. Figure 8b shows the same sequences
using PTPSA. We conclude that the PMBC performs better
than the PTPSA in detecting embedded tumors in MR brain
images.

MR image with realistic tumor
Figure 9 shows plots of a cumulative histogram versus an FD
for real ACR brain-MR images that contain intrinsic tumors in
patients. In Fig. 9, comparison of corresponding position plots
reveals that there is difference between 306-a and 306-b im-
ages at location (0, 0). The plots for the other locations such
as (0, 1), (1, 0), and (1, 1), however, do not show any such
difference. This difference suggests that there may be a tumor
at image quadrant (0, 0) of 306-a or 306-b image. From Fig. 9,
the other two image pairs, such as 401-a and 401-b and 503a
and 503-b, do not show such reliable differences in the corre-
sponding cumulative histogram plots. Fig. 10 shows the differ-
ences in FDs for the without and with tumor MR image pairs in
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a

b

Fig. 8. MR images using a PMBC and b PTPSA algorithms. FD differences indicating tumor locations (second column) between the normal
(m35, m40, and m45) and type-1 tumor (m35b, m40b, and m45b) and (third column) between the normal (m35, m40, and m45) and type-2
tumor (m35w, m40w, and m45w)
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Fig. 9a–c. Comparison of cumulative histogram versus FD for ACR brain MR images: a without (306-a) and with (306-b) tumor; b without
(401-a) and with (401-b) tumor; c without (503-a) and with (503-b) tumor

Fig. 6b, such as 306-a and 306-b, 401-a and 401-b, and 503-a
and 503-b using the PMBC and PTPSA algorithms, respec-
tively. The differences in the FDs in Fig. 10 clearly show the
corresponding tumor locations. Thus, the PMBC and PTPSA
methods allow us to detect and locate the tumor in the ACR-
CD brain-MR-image data sets considered in this work.

5. Conclusion and future work

In this study, we discuss existing fractal-based algorithms and
propose three novel improvements of these algorithms for
identifying tumors in brain MR images. We use the BC al-
gorithm, the widely accepted estimation method, as the basis
for developing PTBC, PMBC, and PTPSA algorithms, respec-
tively. We employ the cumulative histogram versus FD with
different threshold values for the PTBC method. A piecewise
FD computation is exploited for the PTBC and PTPSA meth-
ods, respectively. The BC method for the FD estimation of a
one-dimensional signal offers good results, as expected. How-
ever, it is not amenable to the rough surface images with two
or higher dimensions, such as clouds and MR images. The
PTBC method can detect the tumor in MR images, though
it is hard to locate the exact position of the tumor. Further,
the changes in FD at each threshold value are not significant.
Both PMBC and PTPSA methods detect and locate the tumor
based on tumor FD differences in embedded-tumor MR im-
ages as well as ACR-CD real brain-tumor MR images. Thus,
the embedded-tumor MR images offer good preliminary test-

ing of our algorithms, while the ACR tutorial CD results show
the validity of our algorithm in an example test case.

Comparing the PMBC and PTPSA methods, the PMBC
algorithm is more sensitive and offers better results in detect-
ing and locating the tumor. Note that the piecewise division of
images still preserves the fractal nature of the tumors for all
three methods. However, the cumulative histogram formula-
tion in PTBC may contribute to non-fractal handling of the MR
images and, hence, unsatisfactory performance of the method.
Further, our algorithms are applied to the 8-bit quantized brain
MR images in ACR CD. Application of our algorithms to 12-
bit quantized MR images may offer better tumor detection due
to improved image resolution and fractal information.

In the future, we need to improve the fractal-based tumor
detection algorithms to test brain MR images with progressive
tumor-development information. Some of the future works
may include development of an FD database that contains
continuous sections of normal brain MR images.A patient may
be diagnosed with a possible brain tumor if the corresponding
brain MR image’s FD differs from that of reference image
sections in the database. However, it may be challenging to
record the brain MR images at exactly the same positions
at different times. Further, the requirement of normal brain
images as references for our proposed algorithms needs to be
alleviated.
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Fig. 10. FD differences indicating tumor locations using ACR MR brain images: a images without tumor; b images with tumor; c FD difference
between first and second columns using PMBC; and d FD difference between first and second columns using PTPSA
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