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Abstract

The blood flow in human arteries has been analytically calculated according to Poiseuille�s equation. Geometry of

the fractal arterial trees has been described in previous article [Gabryś E, Rybaczuk M, Kędzia A. Fractal model of

circulatory system. Symmetrical and asymmetrical approach comparison. Chaos, Solitons & Fractals, in press]. Blood

vessel trees are consisted of straight, rigid cylindrical tubes. In each bifurcation two new children segments appears

according to Murray law.

Blood flow in circulatory system is driven by the pressure differences at the two ends of the blood vessel. A math-

ematical analysis shows the continuous dependence of the solution on vessel tree parameters and boundary condition.

� 2005 Published by Elsevier Ltd.
1. Introduction

The ability to predict the pressure and flow at any site in arteries can lead to a better understanding of the arterial

function. Theoretical models play an important role in understanding the hemodynamic forces.

Although in vivo studies might give exact solutions, the results are very difficult to obtain. So far, attention has been

given mainly to the fractal geometry and fractal dimension of blood vessel trees without flow analysis through fractal

models [10,17–19].

Flow analysis in circulatory system is usually done for simplified model consisting of one or two bifurcation levels

and relatively high vessel diameters common to arterial level. Some work concern on numerical analysis of blood flow in

circulatory system is reduced to 1D or 0D model [2,7].

The description of blood flow in circulatory system with some local phenomenon (carotid bifurcation, stented artery

etc.) is better described by 3D numerical simulation, based on the Navier–Stokes equations. However, from the com-

putational point of view, numerical simulations of the 3D tree completely based on these equations are unaffordable at
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present. For given 3D fractal blood vessel trees analytical calculation of blood flow based on reduced Navier–Stokes

equation has been done.

Fractal model of blood vessel system is a certain geometrical simplification but it suffices for acceptable blood flow

analysis. This analysis permits understanding influence of hemodynamic forces and its role in the development of vas-

cular diseases.
2. Modelling of the blood flow through fractal vascular tree

The liquid motion equations for circulatory system are very complicated. In order to obtain analytical solution fol-

lowing simplifications have been assumed.

Blood is non-Newtonian fluid consisting of blood cells and blood plasma. Proportional relation between cells and

plasma is determined by hematocrit value [14]. The hematocrit value is the most important parameter defining blood

viscosity. The hematocrit of normal human blood is about 45% and it relates to blood viscosity about 4 · 10�3 [Pa s].

Assumption of constant blood viscosity and homogeneity in whole vessels tree is necessary to estimate blood flow

through blood vessel trees. According to researches [1] during a normal flow in straight arteries blood behaves as a near

Newtonian fluid.

In real blood vessels system, vessel walls are elastic and can change its diameters. In this way resistance of blood

vessel system is regulated. This process is known as autoregulation and corrects nutrition of all cells in human body.

Assumption of vessel wall as a rigid pipe with constant diameter for given vessel segment is necessary to application

of hydrodynamical equations and analytical calculation of modelled trees.

Blood flow estimation assumes laminar flow for the entire fractal vessel tree. In large arteries systolic aberrations of

laminar flow is a result of wave propagation. Turbulent flow is also observed in pathological vessels. In small arteries,

which are subject to described research, assumption of laminar flow is correct. Hydrodynamic equations for small arter-

ies give correct results in biological circulatory system [4–6,16,24,25].
3. Poiseuille’s law

Consider a steady; laminar flow of Newtonian fluid with constant viscosity through a horizontal cylindrical rigid

tube (vessel segment). For such model Navier–Stokes equations are simplified to Poiseuille�s equation.
Q ¼ p � r4
8l

Dp
L

ð1Þ
Poiseuille�s law relates the blood flow Q [ml/s] through a blood vessel with the difference in blood pressure at the two

ends of vessel segment Dp created by the heartbeat, radius r, length L, and viscosity l of the blood, which correlates to

hematocrit.

The most effective factor controlling blood flow is radius of the blood vessel. High blood pressure can be caused by

narrowing blood vessel and is reduced by relaxing the smooth muscle tension that controls the blood vessel radius. This

process is known as an autoregulation.

During laminar blood flow cylindrical layers of liquid are exposed to internal friction, which represents resistance of

flow R.
R ¼ 8lL
p � r4 ð2Þ
The resistance of blood motion through vessels is most strongly dependent on radius, with the fourth power

relationship.

Because of fluid friction blood flow velocity within vessel varies from none in wall proximity to maximum value in

the center of the vessel creating parabolic velocity profile. Average velocity (with respect to cross-section) inside blood

vessel segment is determined as:
Um ¼ Dp � r2
8l � L ð3Þ
Mathematical models of blood flow in small arteries are usually based on Poiseuille�s equation [9]. These equations give

acceptable results in biological circulatory system [4,13,15,25].
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4. Mass conservation

Compliance with mass conservation law requires that flow rate in parent vessel must equal the total flow rate in chil-

dren vessels on each branching level. Assuming that flow rate is constant for individual blood vessel the continuity

equation is expressed by
Q0 ¼ Q1 þ Q2 ð4Þ
At an arterial bifurcation the flow in the parent vessel Q0 equals the sum of flow in two children segments Q1 and Q2

respectively.
5. Boundary conditions

Flow evaluation starts at terminal vessel and proceed to the root segment. With each terminal vessel equal flow value

is associated. Predefined flow is typical for size bracket terminal branches belong to [14,20,21]. Recurrent procedure

gives flow parameters evaluation on lower branching level according to mass conservation law and Poiseuille�s law.
In order to illustrate the impact of structure and functional characteristic of the arterial tree, simulations have been

done for different fractal blood vessel trees with different value of bifurcation exponent. Only asymmetrical trees have

been tested according to previously studied impact of tree asymmetry for transport vessels geometrical properties. Sym-

metrical trees are concerned in capillary bed mainly. In capillary system vessel diameters are similar to the size of blood

cells so blood flow considerations based on Poiseuille�s law are not suitable here.

Bifurcation exponent determines cross section area of children vessels. After bifurcation in circulatory system total

cross section area of children vessel is always bigger than cross section area of parent vessel [25]. So bifurcation expo-

nent must be bigger than 2. In literature the exponent value for human arterial tree is equal 2.6–2.7 [3,11,12,23]. For

large arteries where blood flow can be turbulent the bifurcation exponent should be around 2.33 [26]. For capillaries

is most likely to be near 3 [3].

Usually in flow analysis vessel symmetry is assumed mainly for sake of simplicity. Arterial vessels split themselves

asymmetrically mostly. Capillaries forks symmetrically are exception to the rule.
6. Flow analysis

Hydrodynamical parameters have been tested for different bifurcation exponent values. Bifurcation exponent, one of

the most important parameters in transport vessel tree, essentially determines flow through circulatory system.

Pressure drop is monotonically descending positive function. Expected asymptotes for bifurcation exponent n = 2.5

is close to 0. Computation performed for higher vessels diameters, for diameter over 1000 lm pressure drop reaches

0.08 kPa, proves descending tendency visualized in Fig. 1. Typical blood vessel system which can be best described

by bifurcation exponent n = 2.7 represents similar trend, although asymptote is expected to be on higher level then

for n = 2.5. Asymptote for n = 3 is approximately 0.88 kPa (Fig. 2).

Vessel termination ratio represents percentage of vessels which are terminated on defined level divided by all vessels

on this level. For subsequent bifurcations flaw rate falls monotonically. Irregular curves after 13th bifurcation occurs
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Fig. 1. Pressure drop for different vessel diameters.
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Fig. 2. Average velocity for different vessel diameters.
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due to finished terminal vessels, which are not taken into volumetric rate aggregation. Percent of finished vessels on

defined level precedes abrupt volumetric flow increase. Logarithmic OY scale emphasis this feature. Every physical

structure, which is finite, would represent similar volumetric flow scattering for higher bifurcation levels. Obtaining

asymptotic solution for higher bifurcation levels requires more efficient computational resources (Figs. 3 and 4).

Flow heterogeneity is a necessary consequence of a uniform shear stress distribution. Both homogeneous perfusion

and uniform shear stress are desirable goals in real arterial trees but each of these goals can only be approached at the

expense of the other. Relation between the heterogeneities in flow and shears stress may represent a more general prin-

ciple of vascular system [22,30–33].

The ability to predict blood flow along arteries can lead to a better understanding of the arterial function.
7. Correction to Poiseuille’s law

Parabolic velocity profile during laminar blood flow in individual vessel is disturbed during vessel bifurcation. Devel-

opment of parabolic flow profile after bifurcation requires correction to Poiseuille�s law. Difference in blood pressure at

the two ends of vessel is express by
Dp ¼ A1Qþ B1Q
2 ð5Þ
This relationship is known as Forchheimer equation.

The first element describes pressure drop during parabolic velocity profile along individual vessel. Coefficient value,

A1 equals the resistance to flow according to Poiseuille�s law A1 = R. The second square element describes additional

pressure drop as a cause of shape parabolic flow profile. Value B1 is expressed by
B1 ¼ q
b
pr4

ð6Þ
b � 0.639 average value from Navier–Stokes equation, q blood density [4].
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Fig. 3. Volumetric flow rate for different vessel diameters.
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Fig. 4. Volumetric flow rate for different bifurcation levels and vessel termination ratio for selected bifurcation exponent.
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Pressure drop have been calculated according to Forchheimer equation. Because of very small value of flow rate

[10�6 cm3/s] for tested fractal vessels, the essential differences between Poiseuille�s Law and Forchheimer equation

are neglectable.

Parabolic velocity profile formation, after bifurcation, is concerned on vessel inlet section le. The length of this sec-

tion is proportional to vessel diameter, Reynolds number and coefficient k
le ¼ kdRe ð7Þ

Re ¼ V � l
l

ð8Þ
k = 0.056 a value obtains after numerical calculation of Navier–Stokes equation (4).

Vessel nodes haven�t as big influence on flow as shaping parabolic velocity profile. In researches, nodes influences

have been omitted.
8. Simulation results

Length of parabolic velocity profile formation (inlet section le) has been evaluated. Influence of bifurcation exponent

value on inlet section le for blood vessel fractal models has been explored.

The length of inlet section depends on bifurcation exponent and Reynolds number mainly. Speed reduction, coher-

ent with lower bifurcation exponent n, is a predominant factor of inlet section length reduction. If inlet section is longer

or equal vessel length than asymmetrical velocity profile follows to the next generation of vessels. The process also in-

volves superposition with inlet section of proceeding vessel [27–29] (Fig. 5–7).
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Fig. 5. Length of vessel inlet section for bifurcation exponent n = 3.
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Fig. 6. Length of vessel inlet section for bifurcation exponent n = 2.7.
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Fig. 7. Length of vessel inlet section for bifurcation exponent n = 2.5.
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Due to relatively low flow velocity nonlinearities are not common in vessels of small diameter. This conclusion op-

poses suggestion of predominant nonlinear flow in small arteries proposed in [4]. Provided Reynolds� number remains

small along with reducing diameter the inlet section length is also reduced. Reduction is not only in absolute units but

relative to vessel length as well.
9. Conclusion

Proposed models of fractal arterial trees have been scaled in such a way that the principal statistical characteristics

are quantitatively comparable with morphometry measurements of real arterial trees. Flow model for defined asymmet-

rical vascular tree has been proposed. Possible simplification and generalizations assumed for aforementioned model

have been discussed. Proposed approach enables straightforward analytical evaluation of flow parameters, which usu-

ally involves very sophisticated numerical computational methods like FEM. Especially for such complicated phenom-

ena as vascular structures and circulation in general.

Irregularities which have been observed during volumetric flow rate are possible for computational model only. In

real situation circulatory system is a close system where after terminal small arteries, capillaries vessel are appeared.

Because of nearly the same size of blood cells and vessel diameter hemodynamical equations could not be applied

on capillaries level.

Terminal vessels flow is equal for all vessel trees. Blood flow in the other vessels depends on bifurcation quantity and

bifurcation exponent mostly. Bifurcation exponent decides about vessel length on given level and step number from

root vessel to terminal vessels.
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