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Article

Early Principles of Structural-
Functional Organization of the 
Nervous System

The decisive pathbreaker in the brain’s cognition and its 
anatomic understanding occurred in the Renaissance and 
in the following centuries. In less than half a millennium, 
the field of geometry advanced from Euclidean geometry 
to the nonlinear dynamics of fractals and chaos (Gleick 
1987) in a quest for geometric unification of neurosci-
ence with genomics: “Our understanding of both the 
genome and the brain will remain partial and disjointed 
until we reach a unification of the intrinsic mathematics 
of structuro-functional geometry of both—as the first is 
without question a foundation of the second” (Pellionisz 
and others 2013). Progress could not have occurred with-
out accomplishing major paradigm shifts. Empowered by 
light microscopy, pioneering studies of Camillo Golgi 
(1843–1926) clashed with a drastically different interpre-
tation by Santiago Ramón y Cajal (1852–1934). Golgi 
developed the black silver staining method, suitable for 
detailed visualization of cells of neural tissue (Fig. 1A). 
He first recognized the intracellular Golgi complex as 
well as Golgi type I neurons (i.e., pyramidal cells with 

long axons) and Golgi type II neurons (i.e., stellate neu-
rons with short or no axons) in the human cerebral cortex 
and cerebellar cortex. However, Golgi (1873) postulated 
his mistaken “reticular theory” in which nervous fibers 
form a continuous network. Ramón y Cajal (1899) pro-
posed an opposing concept, the neuron theory, according 
to which the relationship between nerve cells was not one 
of continuity but rather of contiguity, mediated by spines 
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Abstract
The natural complexity of the brain, its hierarchical structure, and the sophisticated topological architecture of the 
neurons organized in micronetworks and macronetworks are all factors contributing to the limits of the application of 
Euclidean geometry and linear dynamics to the neurosciences. The introduction of fractal geometry for the quantitative 
analysis and description of the geometric complexity of natural systems has been a major paradigm shift in the last 
decades. Nowadays, modern neurosciences admit the prevalence of fractal properties such as self-similarity in the 
brain at various levels of observation, from the microscale to the macroscale, in molecular, anatomic, functional, 
and pathological perspectives. Fractal geometry is a mathematical model that offers a universal language for the 
quantitative description of neurons and glial cells as well as the brain as a whole, with its complex three-dimensional 
structure, in all its physiopathological spectrums. For a holistic view of fractal geometry of the brain, we review here 
the basic concepts of fractal analysis and its main applications to the basic neurosciences.
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2 The Neuroscientist XX(X)

protruding from dendrites fitted to receive input from the 
synapses of other neurons and emitting their output along 
a single axon. Figure 1B shows that granule cells appear 
on the diagram-like small blobs. The large Purkinje cell 
body looks like a giant blob with an elaborate two-dimen-
sional (2D) framework of dendrites that mesmerized gen-
erations after the publication of Ramón y Cajal’s (1911) 
epic two-volume book, a veritable bible of neural 
structures.

Complex System Theory

The umbrella term used to brand the main characteristics 
of natural objects as “complex,” including features of 
biological entities, was temporary shorthand to sum up 
poorly understood descriptors, such as “regularity,” 
“irregularity,” “shape,” and even “behavior.” The term 
“complexity” was introduced by Ludwig von Bertalanffy 
(1901–1972) (von Bertalanffy 1969), along with Joseph 
Henry Woodger (1894–1981) and John Burdon Sanderson 
Haldane (1892–1964). The study of the complex relations 
underlying the structure and behavior of a system repre-
sents the primary goal of complex systems theory. Its pro-
ponents described natural systems as consisting of parts 
differently interrelated to each other but in a largely unex-
plained manner. Neil Fraser Johnson (1961–) stated, 
“Even among scientists, there is no unique definition of 
complexity” (Johnson 2007).

The need for a better way of classifying natural as well 
as pathological anatomic forms, and objectively quantify-
ing their dynamic changes, prompted an increasing num-
ber of investigators to adopt fractal geometry, a branch  
of nonlinear mathematics (Fig. 2), over mathematically 
heterogeneous and nonspecific theories of “complex sys-
tems.” The physical-mathematical but overly vague con-
cept of “complexity” that reigned by the end of the 19th 
century (Poincaré 1905) is generally regarded by the 

Figure 1. (A) Pyramidal cell of the prefrontal cortex stained by the Golgi method (black reaction): potassium dichromate 
+ silver nitrate → silver chromate (microcrystallization). Image provided by Bob Jacobs (Laboratory of Quantitative 
Neuromorphology, Department of Psychology, Colorado College, Colorado Springs, CO, USA). (B) Ramón y Cajal drawing of 
two cerebellar Purkinje cells (pigeon’s cerebellum).

Figure 2. Fractal geometry, originally introduced by Benoit 
B. Mandelbrot (1924–2010), is currently applied in different 
fields of investigation. The number of published articles that 
use fractal geometry in the PubMed database has rapidly 
increased during the last years.
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contemporary scientific community as not sufficiently 
operational. Consequently, it yielded to the theoretical/
heuristic breakthrough provided by fractal geometry 
(Mandelbrot 1983).

From Euclidean to Fractal Geometry

Unlike ancient Euclidean geometry, so simplistic in the 
representation of most man-made objects and so distant 
from the power to depict natural forms, fractal geometry 
is ascertained as a discipline suitable for representing the 
profiles of a mountain or a coast, the clouds, crystalline or 
molecular structures, and various biological dynamic 
processes. As stated by Grizzi and Chiriva-Internati 
(2005), subcellular components, cells, tissues, and organs 
exhibit a pivotal property of all anatomic systems, with 
their description advancing from Euclidean to fractal 
geometry. At macroscopic as well as at microscopic lev-
els of observation, intrinsic complexity is apparent. One 
of the pre-eminent characteristics of the entire universe is 
a tendency to form multilevel structures of “systems 
within systems,” each of which forms a “whole in rela-
tion to its parts and is simultaneously part of a larger 
whole” (Grizzi and Chiriva-Internati 2005).

The concepts of fractal geometry were developed by 
Benoit B. Mandelbrot (1924–2010) based on prior pio-
neering work by Jules Henri Poincaré (1854–1912), 
Georg Ferdinand Ludwig Philipp Cantor (1845–1918), 
and Lewis Fry Richardson (1881–1953). Mandelbrot first 
used the term “fractal” in his book entitled Les Objets 
Fractals: Forme, Hasard et Dimension (Mandelbrot 
1975) and subsequently in The Fractal Geometry of 
Nature (Mandelbrot 1983). He came forward with a uni-
versal mathematical code for interpreting the multifari-
ous world of natural forms. As Michael Fielding Barnsley 
(1946–), a British mathematician, entitled his books, we 
find Fractals Everywhere (Barnsley 1988), not only as 
monofractals, but SuperFractals (Barnsley 2006).

It is now recognized that the “rough” shape is the most 
important property of every anatomic system, strongly 
influencing its behavior and different relationships with 
surrounding components. The definition of the concepts 
of “form” and “function” of a particular cellular or sub-
cellular structure and its description in quantitative terms 
represent two problems. Even today, the concept of 
“form” and its quantitation are not completely resolved, 
leading to broad debates among morphologists. According 
to D’Arcy Wentworth Thompson (1860–1948), “it is in 
terms of greatness and direction that we have to report 
every conception of our forms. The form of an object is 
defined in fact when we know its greatness, absolute or 
relative in the different directions” (Thompson 1992). 
Morphometric analyses based on the concepts of area, 

perimeter, form factor, or Feret diameter, although largely 
used in the quantitative analysis of morphological forms, 
only approximately define the object under measurement. 
Such an approximation derives from the rigidity of the 
reported linear measures.

As opposed to “regular measures,” natural objects are 
characterized by irregularity and rough shapes that are 
seemingly very complex. We are used to thinking that 
natural objects have a certain form and that a characteris-
tic scale determines this form. To correctly measure the 
properties of the object, such as length, area, or volume, 
we measure it at a resolution finer than the characteristic 
scale of the object. This simple idea is the basis of 
Euclidean geometry and the theory of measurement. 
However, Mandelbrot (1967) brought to the world’s 
attention the fact that many natural objects simply do not 
have this preconceived form. The concept was furthered 
by pointing out that living objects also have structures in 
space that cannot be characterized by one spatial scale 
(Bassingthwaighte and others 1984). Based on these 
assumptions, the fractal dimension (FD) was introduced 
as an estimator of the space-filling properties of irregu-
larly shaped objects. Since the “golden age” of cell biol-
ogy that started in about 1960, there has been an eruption 
of fractal geometry into the life sciences in biology and 
medicine (Belaubre 2006; Losa and others 1997, 2005; 
Losa 2009).

In a holistic view of fractal geometry of the brain, part 
I of this series will introduce the general concepts of frac-
tal geometry and its application to basic neuroscience, 
while part II will discuss the applications of fractals in the 
clinical neurosciences.

Basic Principles of Fractal Geometry 
and Applications in Biology

Mathematical fractal structures arise commonly in sys-
tems that involve iteration, that is, procedural repetition, 
and recursion in which the input of a new iteration is the 
previous state of the system. As shown by Mandelbrot 
(1983), the simplest underlying principle of fractals is a 
recursive iteration. For example, the “complex” 
Mandelbrot set (Fig. 3A) arises from the utterly simple  
Z = Z ^ 2 + C recursive algorithm, where any new Z com-
plex number is generated by its predecessor.

Natural fractal entities are mainly characterized by 
four properties: 1) irregularity of their shape, 2) self-sim-
ilarity of their structures, 3) noninteger or fractional (frac-
tal) dimension, and 4) scaling, which means that measured 
properties depend on the scale at which they are mea-
sured. The most important property of fractal objects is 
that the schemes that characterize them are similarly 
found again and again at descending orders of magnitude 
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so that their component parts, in all dimensions, have a 
form similar to the whole. Coastline shapes are prototypi-
cal examples of complex curves with the property that, in 
a statistical sense, each portion can be considered a 
reduced-scale copy of the whole (Mandelbrot 1967). This 
property is referred to as “self-similarity.” Self-similarity 
can be defined geometrically or statistically. An object is 
geometrically self-similar when every smaller piece of 
the object is an exact, or nearly exact, duplicate of the 
whole object. The classic examples of geometrically self-
similar objects are the “snowflake” and the “curve,” from 
Niels Fabian Helge von Koch (1870–1924), a Swedish 
mathematician who described these peculiar geometric 
forms for the first time in 1904 (Ristanović and Losa 
2013) (Fig. 3B and 3C). Another important geometrically 
self-similar figure is the “Sierpinski triangle” (Fig. 3D). It 
was originally described in 1915 by the Polish mathema-
tician Waclaw Sierpinski (1882–1969). Statistical self-
similarity, also indicated with the term “self-affinity,” 
concerns biological objects, including all anatomic forms. 
Small pieces that constitute anatomic systems are rarely 
identical copies of the whole system. If we consider a 
portion of tree branches or vascular vessels, they are not 
a copy of the whole tree but represent the same self-simi-
larity and structural “complexity” (i.e., roughness and 
spatial pattern). Various statistically self-similar anatomic 
structures include not only the general circulatory sys-
tem, the bronchial tree, and the biliary tree of the liver but 

also the dendritic structure of the neuronal cells, the duc-
tal system of a gland, the cell membrane, and the fibrous 
portion in chronic liver disease (Cross 1987, 1994; Losa 
2009; Pellionisz 1989) (Fig. 4).

Measurement of Fractal Properties

Self-similarity measurement methods are a potent tool in 
the study of natural objects, which appear too complex to 
be quantified by Euclidean geometry. A fundamental con-
cept for the evaluation of geometric objects is that of 
dimension, which is a characteristic value of the system. 
Two main definitions of dimension have been proposed. 
The first, named “topological dimension,” was intro-
duced by the Austrian mathematician Karl Menger 
(1902–1985). The topological dimension assigns an inte-
ger number to every point in Euclidean space, indicated 
with the symbol E3, and attributes a dimension of 0 to the 
“point,” dimension 1 to the “straight line,” dimension 2 to 
the “plain surface,” and dimension 3 to the “three-dimen-
sional figure” (or volume). The second definition of 
dimension came from Felix Hausdorff (1868–1942) and 
Abram Samoilovitch Besicovitch (1891–1970). They 
attribute a real number to every natural object in E3, lying 
between the topological dimension and 3. Mandelbrot 
(1967) indicates the dimension of Menger with the sym-
bol Dγ and that of Hausdorff and Besicovitch with the 
symbol D. For all Euclidean figures, Dγ and D are 

Figure 3. Examples of geometrically self-similar fractals. (A) The Mandelbrot set. The “curve” (B) and the “snowflake” (C), 
described by Niels Fabian Helge von Koch (1870–1924), and the “Sierpinski triangle” (D), described by the mathematician 
Waclaw Sierpinski (1882–1969).
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coincident (Dγ = D). This equality is not valid for all the 
fractal natural objects, however, because the inequality  
D > Dγ is verified. Natural objects can be roughly repre-
sented by Euclidean shapes (i.e., a tree resembles a cylin-
der, the sun is similar to a sphere, a mountain can be 
interpreted as a cone), but in reality, these shapes are not 
Euclidean figures. As suggested by Mandelbrot (1967), it 
is possible to determine the Hausdorff-Besicovitch 
dimension or FD, of irregularly shaped objects through 
the covering procedure of the topological space of the 
object being measured.

Several methods have been described to estimate the 
FD (Falconer 2003; Hastings and Sugihara 1993). The 
most widely used in the biomedical sciences is called the 
“box-counting method,” offering the “box-counting” 
dimension as an estimator of the space-filling properties 
of natural objects in 2D and 3D space (Barnsley 1988; 
Falconer 1997, 2003). This method applies the following 
formula:

                        
D

LogN

Log
B =

→
lim

( )

( / )
,

ε

ε
ε0 1  

(1)

where D
B
 is the box-counting FD of the object, ε is the 

side length of the box, and N(ε) is the smallest number of 
boxes of side ε required to cover the outline of the object 
completely. Because the zero limit cannot be applied to 
natural objects, the dimension was estimated by the 
formula

                                    D  d,=  (2)

where d is the slope of the graph of Log {N(ε)} against 
Log (1/ε). The linear segments of these graphs were 

identified using the least-squares method of regression, 
and the gradients of these segments are calculated using 
an iterative resistant-line method. Simply put, the FD rep-
resents an estimate of morphological complexity (Cutting 
and Garvin 1987); the more irregular an object, the higher 
its D value, providing a quantitative index of the rough-
ness of natural objects (Mandelbrot 1983). It should be 
emphasized that, according to the logarithmic calcula-
tion, small changes in the FD correspond to large differ-
ences in the shape of the object. Several further 
methodologies have been proposed for the measurement 
of the FD (Lopes and Betrouni 2009), and other parame-
ters and techniques have been introduced for the analysis 
of fractal systems (i.e., Hurst coefficient, detrended fluc-
tuation analysis) (Fernández and Jelinek 2001; Stadnitski 
2012). Another fractal parameter is “lacunarity.” Where 
the FD measures how much space is filled, lacunarity 
complements the FD value by measuring how the object 
fills the space (Mandelbrot 1983; Tolle and others 2003). 
Being a measure of the “gappiness” of the patterns, and 
then an index of the heterogeneity of the object, lacunar-
ity is often analyzed in combination with the FD. Fractal 
systems may also show a gradient of FDs, meaning that 
their pattern generates multifractal spectra. When a frac-
tal system cannot be described by a single exponent, as 
occurs in several systems in nature, it is defined as a mul-
tifractal system; in such a case, the continous spectrum of 
exponents can be analyzed by means of multifractal anal-
ysis, aimed to describe the variation of the scaling expo-
nent across the dataset (Harte 2001; Lopes and Betrouni 
2009; Stanley and Meakin 1988).

In the last 20 years, fractal geometry has vastly 
expanded (Fig. 2) as a method able to model several 

Figure 4. Examples of “tree-like” fractal anatomic systems. From left to right: bronchial tree, renal vascular and urinary systems, 
and heart coronary system. By kind concession from Prof. Dr. Manfred Tschabitscher (Centre for Anatomy and Cell Biology, 
Medical University of Vienna, Vienna, Austria).
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natural phenomena in a simple and efficient manner. In 
addition, the FD has been applied to many different fields 
of biological science, among which are histology, normal 
and pathological anatomy, botany, molecular biology, 
and zoology.

Investigation into the clinical importance of this nonlin-
ear mathematical tool, and why it is important to the study 
of the fractal properties of anatomic structures or their 
irregular pathological changes, has recently accelerated 
(Fudenberg and others 2011; Grosberg and others 1988, 
1993; Lieberman-Aiden and others 2009; Pellionisz 2008, 
2012). Continuous technological development has pro-
duced sophisticated computer-aided systems that are able 
to produce images with maximum detail. Furthermore, it 
has been realized that sometimes overcoming the limits of 
the human eye in distinguishing among the different shapes 
of anatomic lesions creates new opportunities of interpre-
tation. The field of imagery has entered a new era made 
possible primarily by the advent of fast computers, sophis-
ticated imaging software, and a computer-generated higher 
order of information display, all driven by the need for 
human comprehension. A number of nonlinear mathemati-
cal methods, including fractal geometry, have been pro-
posed to measure the complex morphologies of natural 
systems (Cross 1994; Dokukin and others 2011). The 
application of the principle of fractal geometry, unlike con-
ventional Euclidean geometry, enables the measurement of 
the FD of almost all irregular biological entities.

Functional Irregularity and 
Morphological Intricacy of the 
Nervous Tissue

The evolutionary concourse of two major events, the tre-
mendous expansion and the differentiation of the neocor-
tex, as recently reported (DeFelipe 2011), has contributed 
to the development of the human brain (Fig. 5). Nowadays, 
modern neurosciences admit the prevalence of fractal 
properties in the brain at various levels, that is, anatomic, 
functional, pathological, molecular, and epigenetic, but 
not so long ago, there was no analytical way to objec-
tively describe complex biological systems such as the 
brain. Facing the intricacy of mammalian brain folds, 
Mandelbrot (1983) first argued, “A quantitative study of 
such folding is beyond standard geometry but fits beauti-
fully in fractal geometry.” Mandelbrot (1967) suggested 
interpreting the results related to cellular morphometrics 
with the likely effect of the “resolution scale” in analogy 
with the “coast of Britain effect” (Losa 2009). At that 
time, however, there was no certainty about the brain’s 
geometry, or neuron branching and interconnections, and 
connectomics. The anatomic histological evidence that 
the complexity of the plane-filling maze formed by den-
drites of cerebellar neural Purkinje cells was reduced in 

nonmammalian species compared to mammals led 
Mandelbrot (1983, 1998) to comment, “It would be very 
nice if this corresponded to a decrease in D (fractal 
dimension), but the notion that neurons are fractals 
remains conjectural.” Since then, a wealth of investiga-
tions have documented the fractal organization of the 
brain and nervous tissue systems (Milošević and others 
2009; Milošević and others 2010; Losa and others 2011; 
Smith and others 1989; Smith and Lange 1995; Werner 
2010). The brain consists of distinct anatomic areas 
formed by the nervous tissue, which is mainly composed 
of neurons and glial cells. The former comprises the axon, 
which is a long cytoplasmic process associated with the 
cell body used to communicate with target organs, and 
the dendrites, which are shorter cytoplasmic processes off 
the cell body used to communicate between neurons. 
Glial cells of various types are structured as a net through 
branched and unbranched protoplasmic processes. The 
brain forges its complexity by combining these different 
anatomic, morphological, and physiological properties, 
which can only be modeled by a supercomputer (Markram 
2006). The growth and morphological differentiation of 
spinal cord neurons in culture and the degree of dendrite 
branching of thalamic and retinal neurons were among 
the first applications of fractal analysis in neuroscience 
(Smith 1994). Further studies have confirmed that the FD 
correlates with the increase in morphological complexity 
and neuronal maturity (Bernard and others 2001; 
Milošević and others 2009; Pirici and others 2009; Jelinek 
and others 2008) towards the complex structure of the 
whole highly convoluted brain cortex, which has also 
been shown to have a fractal structure (Hofman 1991). 
Hofman (1991) showed that the convolutions of the brain 
are the result of the fractal folding and compartmentaliza-
tion of neurons into modular circuits, governed by simple 
iterative rules aimed to generate the actual brain design.

Fractal analysis has also been applied to anatomic/his-
tological images and neuroimaging for quantifying the 
developmental complexity of the human cerebral cortex 
and several neurophysiological states. This topic will be 
covered in the second part of this series.

Non-Euclidean Geometry of Neurons 
and Microglia

Neurons and microglia take on many shapes related to 
function and position within the nervous system. This 
makes it difficult to objectively quantify any structural 
attributes, especially as these do not correspond to 
Euclidean shapes. Using cell area or cell diameter,  
for instance, will not always differentiate subtypes of 
cells, as may be the case with cat retinal ganglion cells 
(Fig. 6A), or will not be sensitive to changes in form 
associated with changes in function, as found with 
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activated microglia (Fernández and Jelinek 2001; 
Karperien and others 2013a, 2013b). Subjective classifi-
cation combined with Euclidean parameters may lead to 
varying subgroup classification (Boycott and Wässle 
1974; Jelinek and Spence 1997; Kolb and others 1981). 
Fractal analysis has been applied to differentiate between 
various visually similar but functionally different neuro-
nal types in different animal species (Bernard and others 

2001; Caserta and others 1995; Elston and Jelinek 2001; 
Henry and others 2001; Jelinek and Elston 2004; Jelinek 
and others 2011; Kniffki and others 1993; Kolb and oth-
ers 1994; Losa and others 1997; Milošević and others 
2010; Neale and others 1993; Porter and others 1991; 
Schierwagen 1989; Schierwagen and others 2007; Skrzat 
and others 1996; Smith and Lange 1995; Wingate and 
others 1992). Fractal analysis has also been used to 

Figure 5. Increase in brain size and the maturation of cortical circuits. The maturation of mental processes and motor skills 
is associated with an approximate fourfold enlargement in brain size. (A, B) Photographs of the brains of a 1-month-old and 
6-year-old child, respectively. An increase in complexity is clearly evident in the drawings of Golgi-stained cortical neurons from 
the cerebral cortex of a 1-month-old (pars triangularis of gyrus frontalis inferior [C] and orbital gyrus [D]) and 6-year-old (pars 
triangularis of gyrus frontalis inferior [E] and orbital gyrus [F]) child. Scale bar (A, B): 2 cm. Reproduced from DeFelipe (2011), 
with permission from the publisher.
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highlight subtle morphological differences in glia and 
neurons and to classify these cell types into morphologi-
cal and functional subgroups (Bernard and others 2001; 
Borodinsky and Fiszman 2001; Jelinek and Fernández 
1998; Jelinek and others 2004; Orlowski and others 2003; 
Porter and others 1991; Senitz and others 1995; Soltys 
and others 2001) (Fig. 6B). Furthermore, it can be used to 
follow the changes in dendritic complexity induced by 
drugs, such as in hippocampal cells after cortisone treat-
ment (Alfarez and others 2009). Also, the FD has been 
shown to classify different morphotypes of astrocytes in 
physiological as well as in pathological states (i.e., stroke, 
dementia) (Pirici and others 2009) (Fig. 7). Figure 8 
shows the application of the box-counting method to a 
dendritic branching pattern, with the slope of the log/log 
graph representing the FD of the patterns itself. To sum-
marize, the FD of a neuron increases with the ruggedness 
of the cellular border, the degree of dendritic branching, 
and the space-filling capacity of the neuron as a whole 
(Borodinsky and Fiszman 2001; Smith and others 1989). 
Lacunarity and FD have been used to show the physio-
logical decline of neuronal and glial structures in the pro-
cesses of aging, whereby the FD decreases and lacunarity 
increases in neurons, while the contrary occurs in glial 
cells, giving rise to a holistic representation of the neuro-
glial network (Suckling and others 2008).

Fractal analysis in experimental neuroscience was 
introduced by Smith and others (1989), who published a 
simple open-access code within Image J (http://rsbweb 
.nih.gov/ij/) that used box covering of an image at differ-
ent scales and determined the double logarithmic rela-
tionship between the scale and area for a neuron. This 
development soon led to an increase in the availability of 

computer-based algorithms to analyze neurons and 
microglia. These methods, including the box-counting, 
caliper, and mass-radius methods, provide the FD 
(Fernández and Jelinek 2001; Landini 1996) as well as 
multifractal dimensions and local connected FDs or lacu-
narity (Jelinek and others 2005; Karperien and others 
2013b; Voss and Wyatt 1991). However, more work has 
to be done to obtain a stronger statistical framework for 
analysis and interpretation of monofractals and multifrac-
tals, the place for multiscale and local connected FDs, 
and the role of lacunarity. Changes in microglial mor-
phology associated with a change in function can be eas-
ily overlooked but may be important markers of 
pathological processes. In some types of biological cells, 
subtle differences in cellular morphology may not be 
quantifiable by Euclidean measures such as area or diam-
eter but are, nevertheless, characterized by space-filling 
attributes that indicate structural complexity and quanti-
fied by the FD. Why microglia change form in many 
pathologies, and what functional and structural conse-
quences accompany these subtle abnormalities, is not 
known. Methods for characterizing microglia that are 
more sensitive than those currently reported in the litera-
ture may shed light on the matter. Such methods comprise 
the use of Lindenmayer systems (L-systems) modeling 
(Pellionisz 1989), combined with morphological param-
eters based on pattern recognition research (Ascoli 1999; 
Costa and Cesar 2001), as well as computational opera-
tions such as the second moment of a blurred histogram, 
second moment of a wavelet, entropy, and lacunarity 
(Behar 2001; Cesar and Jelinek 2003; Cornforth and oth-
ers 2005; Costa 2001; Jelinek and others 2003; Soares 
and others 2006).

Figure 6. (A) Types of a retinal ganglion cells in different mammals. Camera lucida drawings from cell images provided by Leo 
Peichl. (B) Box-counting dimension of microglia in the human cortex. Drawing provided by Audrey Karperien.
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Figure 8. Application of the box-counting method to a dendritic branching pattern: (A) the whole image is covered with a set of 
squares, and the squares that cover the dendrites are counted. (B) Log-log plot between the numbers of squares (N) and square 
size (r) is fitted by a straight line. The fractal dimension D is calculated from the slope of the straight line. R is the corresponding 
correlation coefficient. Reprinted from Milošević  and others (2009), with permission from the publisher.

Figure 7. Fractal analysis of three different types of astrocytes. The first row shows the original images, the second row shows 
the binary silhouette of the cells, and the third row shows the outline mask, with the corresponding fractal dimension values. 
Reprinted from Pirici and others (2009), with permission from the publisher.
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Figure 9. Fractal model (A-E) of the Purkinje neuron (of the guinea pig [F]). The model illustrates how the dendritic tree 
can be built up by a process of “self-similar repetition.” As shown (B-E), the Lindenmayer string replacement algorithm yields 
the fully developed fractal model in just four recursive steps to be compared to the dendritic tree. At each step (B-E), all 
branchlet ends of the former are replaced by the fractal template (B). The emerging fractal neural modeling corroborates a 
spatial “code repetition” of the growth process with repetitive access to the genetic code. This conceptual link between the 
two metageometries of the double helix and “fractal seed” may ultimately lead to precisely pinpointing those exact differences 
in the “genetic” code that lead to differentiation to Purkinje, pyramidal, Golgi, or other types of specific neurons. The “fractal 
recursive model” led to the notion of “FractoGene” for conceptual linkage of the fractal nature of growth of organisms driven by 
a “repetitive access to genetic code” (Pellionisz 1989; Simons and Pellionisz 2006). Reproduced with permission from Pellionisz 
(1989).

With the advent of 3D image reconstruction using 
scanning electron microscopy or confocal microscopy, 
fractal analysis has also moved into this realm (Lopes and 
Betrouni 2009; Dokukin and others 2011; de Resende and 
others 2013). Schierwagen and others (2007) have pub-
lished an interesting article on 3D multiscale analysis of 
cortical pyramidal cells, providing additional information 
on pyramidal neurons and proposing novel features 
derived from this method, such as peak fractality. The 
continuous evolving nature of fractal analysis within 
biology in medicine requires stringent criteria for estab-
lishing the attributes that define an object as fractal 
(Delignières and Marmelat 2012; Jelinek and others 

2013; Milošević and others 2009). Preprocessing of 
images, whether they are analyzed in a binary grayscale 
format or as outlines, will have an effect on the results. 
Applying box-counting, mass-radius, or Minkowski-
Bouligand dimensions, among others, will also affect the 
magnitude of the FD and needs to be carefully considered 
(Jelinek and Fernández 1998). Various mammalian astro-
glial cell types have also been classified by means of frac-
tal analysis (Reichenbach and others 1992), but the same 
analysis has not been able to discriminate the different 
patterns shown by the astroglial cytoskeletal profiles 
(Reisin and Colombo 2002) for lack of self-similarity and 
for the simple linear morphology of the cytoprofiles.
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Towards a Unified Fractal Model of 
the Brain

There is an increasing interest in both the fractal proper-
ties of DNA (Cattani and Pierro 2013; Flam 1994; 
Pellionisz and others 2013; Perez 2010; Petoukhov 2011) 
as well as fractal organelles (i.e., neurons) and in the frac-
tal character of organs and organisms (Elnitski and others 
2011; de Resende and others 2013; Pellionisz 1989; Losa 
2009). The spatial organization of DNA into chromatin 
has also been shown to have a fractal topological archi-
tecture (Bancaud and others 2009), as a model of the 
“fractal globule” (Mirny 2011; Barbieri and others 2012).

Mandelbrot’s (1983) musings about neurons were 
directly addressed by a fractal model of the guinea pig’s 
Purkinje neuron (Fig. 9), linking for the first time the 
fractality of the genome with the fractality of organelles 
such as neurons (Pellionisz 1989, 2008) (Fig. 10). 
Decades of computer modeling of neurons and neuronal 
networks (Pellionisz and Szentagothai 1973; Pellionisz 
and others 2013; Simons and Pellionisz 2006) suggested 

that the amount of information necessary to build just a 
tiny fraction of the human body, that is, just the cerebel-
lum of the nervous system, was a task for which 1.3% of 
the information that the genome could contain was totally 
insufficient: “Fractal genome grows fractal organism; 
yielding the utility that fractality, e.g. self-similar repeti-
tions of the genome can be used for statistical diagnosis, 
while the resulting fractality of growth, e.g. cancer, is 
probabilistically correlated with prognosis, up to cure” 
(Pellionisz 2008). For recursive iterative development of 
a brain cell, see Pellionisz (1989), with the generalized 
principle of recursive genome function enabling fractal 
iteration (Pellionisz 2008; Landini 2011; Pellionisz and 
others 2013).

The brain is now accepted as one of nature’s complex 
networks (West 2012). The hierarchical organization of 
the brain, seen at multiple scales from genes to molecular 
networks (Agnati and others 2008), to building neurons 
organized in micronetworks and macronetworks, has a 
fractal structure as well, with various modules that are 
interconnected in small-world topology (Gallos and 

Figure 10. Fractal model of the Purkinje neuron (of the guinea pig), which links for the first time the fractality of the genome 
with the fractality of neurons. The bottom row shows the Y-shaped fractal template, arising from “protein coding” the DNA > 
RNA > PROTEIN chain. Such a structure, however, is not an “end product” as postulated by the “central dogma” of Crick. It is 
known by the vast literature of “protein signaling” and “transcription factors” that proteins do bind with noncoding DNA (that is 
now widely known as “anything but junk”). The principle of recursive genome function interprets such a function as the buildup 
of protein structures in every step of the L-string replacement retrieves auxiliary information, relayed by noncoding RNA, to 
sustain fractal growth. The breakthrough by the new principle replacing old dogmas thus reveals that the genomic-epigenomic 
system permits the implementation of an entire class of “recursive algorithms.” The four-step fractal development of the Purkinje 
cell is visible, as illustrated also in Figure 9. A quantitative analysis established that not only are the protein structures fractal, but 
the self-similar repetitive segments of DNA also show the fractal signature: they follow the “Zipf-Mandelbrot fractal parabolic 
distribution curve” (Pellionisz and others 2013). The theoretical significance is that the fractality found in DNA and organisms, for 
a long time “apparently unrelated,” was put into a “cause and effect” relationship by the principle of recursive genome function 
(Pellionisz 2008). Reproduced with permission from Pellionisz (1989).
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others 2012a, 2012b). Fractal analysis can help scientists 
to speak a common language for the quantitative under-
standing of natural complexity (Grizzi and others 2012) 
and, in this case, of the brain itself. It is realistically 
expected, therefore, that the “fractal approach” may be a 
kind of Rosetta stone in neurosciences for translating dif-
ferent discoveries and fields of research into a holistic 
view of the brain. The various clinical applications of this 
field will be described in part II of this series.
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