
Journal of Materials Processing Technology 139 (2003) 219–225

Rapid prototyping for self-similarity design
S.C. Soo, K.M. Yu∗

Department of Manufacturing Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, PR China

Abstract

This paper proposes a method for the rapid prototyping (RP) of self-similar objects. RP technology makes available the physical generation
of a solid object. However, the contemporary design capability of a computer-aided design (CAD) system can atmost use the non-uniform
rational B-spline (NURBS) modelling method. When the design has a very complicated shape with self-similarity, contemporary CAD
systems can no longer handle the object. In fact, most objects in nature are self-similar. It is valuable to develop a method that can fabricate
self-similar objects. Natural objects, such as mountains, clouds, and trees have irregular or fragmented features with self-similarity. These
natural objects can be realistically described the by fractal geometry method, while Euclidean geometry is mainly used to represent simple
man-made objects such as polyhedra. A typical self-similar fractal solid, the Menger sponge, will be used to illustrate the method.

In order to represent a self-similar fractal object for RP, the first task is to develop a method to model the object in a computable form. In
this paper, a new data structure, called the radial-blossoming tree (RBT) structure, is proposed and implemented in order to bridge the gaps
among CAD, RP and fractal geometry. Based on the RBT representation, an RP toolpath can be traced out more efficiently. The Menger
sponge will then be produced layer by layer from the RP machine.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords:Rapid prototyping; Fractal geometry; Data structure; Fractal modelling

1. Introduction

Computer-aided design (CAD) is at the heart of the
present industrial revolution. The design capabilities of
contemporary CAD systems are either based on the solid
modelling method or on the surface modelling method
[1]. The surface modelling method gives a precise and
a convenient way to sculpture free-form surfaces, while
the solid modelling method provides an unambiguous and
information-complete solution to define a three-dimensional
object[2]. On the other hand, rapid prototyping (RP) tech-
nology is used with CAD to make available the physical
generation of a solid object.

Natural objects, such as mountains, clouds, and trees have
irregular or fragmented features with self-similarity. These
natural objects can be realistically described by fractal ge-
ometry while Euclidean geometry is mainly used to repre-
sent man-made objects such as squares, circles and triangles.
It is thus valuable to develop a method that can manufac-
ture self-similar designed objects. Here, fractal geometry is
used in the representation since it has the important geo-

∗ Corresponding author.
E-mail address:mfkmyu@polyu.edu.hk (K.M. Yu).

metric property of self-similarity. Fractal geometry can also
provide a simple way to represent jewellery design which
needs to be aesthetically appealing to humans. However,
no commercial CAD systems are to the efficient manipu-
lation of fractal geometry. For example, the non-uniform
rational B-spline (NURBS) method in surface modelling
cannot be used to model a fractal curve due to fragmen-
tation. Further, the constructive solid geometry (CSG)
method in solid modelling will represent an object hierar-
chically, but it cannot model the self-similarity in the fractal
object.

The RP cycle can be broken down into stages as shown
in Fig. 1. A computer model of an Euclidean object is first
generated with the help of CAD systems. The facetting
step is to approximate the original model with facets. Obvi-
ously, this has inherent accuracy problems. Recently, there
have been much research on how to minimize this prob-
lem by using direct slicing[3]. The purpose of the slice
model is to provide information for the generation of a layer
manufacture toolpath. Contour data are obtained from slic-
ing the STL file or the computer model directly. Slicing is
a time-consuming process and it further approximates the
STL file or the computer model with slab volumes. As a
result, much research have been done in proposing differ-
ent slicing algorithms to achieve a more accurate result[4].

0924-0136/03/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0924-0136(03)00223-1



220 S.C. Soo, K.M. Yu / Journal of Materials Processing Technology 139 (2003) 219–225

Fig. 1. The RP workflow.

In the next stage, a toolpath will be generated. Finally, the
information in the toolpath is converted to RP machine codes
for physical prototype fabrication.

In order to manufacture fractal objects, say with RP,
a suitable modelling method needs to be developed. The
method should build a computer model that can communi-
cate with the RP process. In the following sections, a new
data structure to model fractal solids will be explained in de-
tail. Based on the data structure, the facetting and slicing ap-
proximation stages in the RP process can be omitted (Fig. 1)
and their associated accuracy problems avoided. Moreover,
the RP toolpath will be obtained directly from the data
structure.

2. Fractal geometry

A fractal is by definition a set for which the Hausdorff–
Besicovitch dimension strictly exceeds the topological di-
mension[5]. The Hausdorff–Besicovitch dimension is also
termed the fractal dimension of the set. It is used to describe
the fragmentation of an object, as the fractal dimension is
usually a non-integer which is a measure of the roughness,
or fragmentation, of the object. It provides a very conve-
nient way to represent or to construct self-similar fractals

Fig. 2. The first four iterations of the Menger sponge.

[6]. A typical self-similar fractal object, the Menger sponge
as shown inFig. 2, will be used to illustrate the proposed
method. The Menger sponge is created by removing cubes
from the centre and side-walls of the generator, the size of
the cubes being removed is one-third that of the genera-
tor cube. The process is repeated to produce a higher level
Menger sponge.

3. Radial-blossoming tree (RBT) data structure

The Menger sponge building follows an omni-direction
recursive sub-cubes (subdivision-cubes) removal. In this
paper, a new data structure, called the RBT structure, is
proposed. The generator cube will be the root node of the
tree. The sub-cubes are related to their parents through tree
node blossoming. Since sub-cubes are removed from all
directions, the tree blossoming is balanced. Finally, whether
a sub-cube is retained or removed will be indicated by as-
signing a status of solid or void respectively to the terminal
node. Based on the RBT representation, the fractal solid
can be represented efficiently.

The building unit of the data structure is a26-connected
data node called theb-node(26= 33− 1). Three pieces of
information will be stored in a node. A b-node is defined as
follows:

struct b-node
{

float len;
bool fill;
b-node *T, *TE, *TNE, *TN, *TNW, *TW, *TSW,

*TS, *TSE, *CE, *CNE, *CN, *CNW, *CW, *CSW,
*CS, *CSE, *B, *BE, *BNE, *BN, *BNW, *BW,
*BSW, *BS, *BSE;
}



S.C. Soo, K.M. Yu / Journal of Materials Processing Technology 139 (2003) 219–225 221

The information consists of:

1. A parameterlen to store the side length of the cube.
2. A Boolean valuefill = {1 or 0}. This value keeps track

of the material providing status. If the value is 1, the
position needs to be filled with material while 0 indicates
no filling.

3. Twenty-six pointers provide topological links to its off-
springs. The pointers are grouped into three sets, the top
set, the centre set and the bottom set. There are nine
pointers in the centre set. For example, the east pointer
of centre is namedCE and the northeast pointer of cen-
tre is labelledCNE. Similarly, the remaining pointers of
the centre set areCN, CNW, CW, CSW, CS andCSE.
Both the top and the bottom sets have nine pointers and
each pointer is labelled with its direction relative to the
centre. For the top set, the upward pointer is labelled as
T, the others have corresponding labels ofTE, TNE, TN,
TNW, TW, TSW, TS and TSE. Likewise for the bot-
tom set, the corresponding labels areB, BE, BNE, BN,
BNW, BW, BSW, BS and BSE. Thus, neighbourhood
information in the 26 directions can be easily obtained
from the pointers.

3.1. Level0 RBT data structure

The Level0 RBT data structure is a single b-node. The
valuelen andfill will be instantiated but not the 26 pointers.
Fig. 3 shows the Level0 RBT data structure.

3.2. Higher level RBT data structure

The single b-node of the Level0 RBT data structure will
blossom into 26 and only 26 child b-nodes to form the
Level 1 RBT data structure. The 26 pointers in Level0 will
point to these 26 new b-nodes.Fig. 4 shows the Level1
RBT data structure. Furthermore, each b-node will blossom

Fig. 3. The Level0 RBT data structure.

Fig. 4. The Level1 RBT data structure.

into 26 new b-nodes to generate higher level data structure.
Fig. 5 shows the Level2 RBT data structure.

3.3. Terminal cell node

In order to obtain the toolpath information directly from
the RBT, a terminal cube model needs to be represented ex-
plicitly in the RBT. A cell nodeis, thus, introduced to rep-
resent the terminal b-node (Fig. 6), which is a4-connected
data node.

Fig. 5. The Level2 RBT data structure.

Fig. 6. A cell node.



222 S.C. Soo, K.M. Yu / Journal of Materials Processing Technology 139 (2003) 219–225

A cell node is defined as follows:

struct cell
{

float x, y, z;
cell *E, *N, *W, *S;

}

Two pieces of information will be stored in the cell node:

1. Coordinate values (x, y, z) provide the positioning infor-
mation for toolpath generation.

2. Four pointers are used to provide the topological infor-
mation for layerwise toolpath generation. The pointers
areN for the north direction,E for the east direction,S
for the south direction andW for the west direction.

The cell nodes will form a layerwise data structure to
represent the terminal cube (Fig. 7).

The required number of cell nodesN3 is determined as
follows: denote the width of a single toolpath, say filament
of fused deposition modelling (FDM) machine, byδ. Then
N is determined by the following equation:

N = Round

(
len

δ

)

The Round(·) is a function to round off the value to an
integer. Thus, the number of cell nodes is determined by
N3. Afterwards, all terminal nodes will have this number
of cell nodes. For example, whenN = 2, four cell nodes
will be used to form a circular-linked list. From the terminal
cube, the coordinate values of the four bottom vertices are
copied to the corresponding coordinate values of the four
cell nodes. Similarly, the coordinate values of the four top
vertices are copied to the four top cell nodes. Thus, the ter-
minal cube is represented by two layers of a circular-linked
list. Also, there are two pointers to mark the starting cell

Fig. 7. A terminal b-node.

Fig. 8. Terminal node withN3 = 23 cell nodes, filament resolution equals
to 2.

node of each layer.Fig. 8 illustrates a processed terminal
node.

4. The RBT data structure generation

4.1. Initialise the RBT

Firstly, a b-node is created and the original size of the
cube is stored. Next, assign all 26 pointers with null value.
This first b-node is also denoted as Level0 of the RBT data
structure.Fig. 3 illustrates the b-node.

4.2. Level1 RBT generation

The Level1 RBT data structure can now be generated.

Step 1. Markfill = 0 for the Level0 RBT.
Step 2. Create a new b-node and assign all its pointers with

null value.
Step 3. Assign theBSW pointer of the Level0 RBT to point

to the new b-node.
Step 4. Repeat Steps 2 and 3 to allocate the remaining 25

new b-nodes.
Step 5. Mark thefill value of all new b-nodes with the

proper value. If the corresponding cube of the
b-node is void, markfill = 0. Otherwise, mark
fill = 1.

Thus, the Level1 RBT data structure is formed as shown
in Fig. 4.

4.3. Higher level RBT generation

The higher level RBT generation is similar to the Level1
RBT generation. Treat all b-nodes in the previous level RBT



S.C. Soo, K.M. Yu / Journal of Materials Processing Technology 139 (2003) 219–225 223

as the parent b-node in Level0. The general procedure for
next level generation is as follows:

Step 1. Markfill = 0 for all b-nodes of the preceding level.
Step 2. Choose the preceding b-node which is pointed

by the BSW pointer. For convenience, the chosen
b-node is called the parent node.

Step 3. Create a new b-node and assign all its pointers with
null value.

Step 4. Assign theBSW pointer parent node to point to the
new b-node.

Step 5. Repeat Steps 3 and 4 to allocate the remaining 25
new b-nodes for the parent node.

Step 6. Mark thefill value of all the new b-nodes with
a proper value. If the corresponding cube of the
b-node is void, markfill = 0. Otherwise, markfill =
1.

Step 7. Repeat Steps 2–6 for allocating the remaining
25,326 new b-nodes for the remaining 25 parent
nodes.

Thus, the higher level RBT data structure is formed to
represent the Menger sponge. For example, the Level2 RBT
data structure is shown inFig. 5.

5. Direct toolpath generation

With the help of the RBT data structure, the RP tool-
path can be generated more efficiently. Two types of tool-
path in each layer have to be considered. They are the
contour toolpath and the area-filling toolpath. All toolpaths
can be obtained from the relation of the pointer directions
and the chaining operation among the data nodes. For con-
venience, the status of a cell node will be classified as
follows:

(i) A cell has at least one pointer which is either pointing
to a null value or afill = 0 cell node.

(ii) A cell that does not have a null value pointer will provide
area-filling information. The cell is called aninterior
cell.

5.1. Traversal algorithm

The toolpath generation is, in fact, an RBT traversal
algorithm. The traversal is largely depth-first. For chain-
ing cells as a toolpath, a vector annihilation operation is
performed.

5.1.1. Vector annihilation
If the traversal encounters a null value, it will return to

the parent b-node and find a neighbouring cell in the direc-
tion where the corresponding pointer statuses are a “mirror”
to the current cell.Fig. 9(a) and (b) illustrates the vector
annihilation process.

Fig. 9. (a) Neighbour cell for annihilation. (b) Vector annihilation: (i)
before annihilation; (ii) after annihilation.

For example, assume the traversal direction is to the east
and the statuses of the pointers are:

(i) E: points to null;
(ii) N: points to the north neighbour;

(iii) W: points to the west neighbour;
(iv) S: points to null;

then, the appropriate next cell will have pointers of:

(a) E: points to the east neighbour (opposite to (i));
(b) N: points to the north neighbour (same as (ii));
(c) W: points to null (opposite to (iii));
(d) S: points to null (same as (iv));

Fig. 10 shows the flowchart of the traversal algorithm.
The key to derive a specific traversal algorithm is to define a
neighbourhood system. In other words, the traversing order
among the b-nodes has to be properly defined. Two traversal
algorithms are derived to generate the RP toolpath.



224 S.C. Soo, K.M. Yu / Journal of Materials Processing Technology 139 (2003) 219–225

Fig. 10. The RBT data structure traversal algorithm.

5.2. Contour toolpath generation—circular traversal

In a slice, all contour toolpaths are a closed polygon and
the traversing order is defined counter-clockwise, i.e.:

xNW ← xN ← xNE
↓ ↑

xW x xE
↓ ↑

xSW → xS → xSE

wherex meansB, C or T, the corresponding set of b-nodes.
Notice that the algorithm is terminated when the starting cell
is visited twice. All contour toolpaths in the slice are simi-
larly obtained. Other layers of the RBT are then traversed.

5.3. Area-filling toolpath generation—raster traversal

The zig-zag toolpath is a common area-filling toolpath.
The traversing order is defined as

xNW → xN → xNE
↑

xW ← x ← xE
↑

xSW → xS → xSE

Fig. 11. The Level2 RBT data structure. The black dotted nodes pro-
vide the contour toolpath information while the white nodes provide the
area-filling information. Moreover, nodes not providing any toolpath in-
formation are hatched.

Fig. 12. The toolpath corresponding toFig. 11.

The algorithm will terminate when all interior cells are vis-
ited. As a result, all the area-filling toolpaths can be ob-
tained. Fig. 11 shows the first layer RBT data structure.
Fig. 12shows the top view of first layer toolpath of a Level2
Menger Sponge in two filaments resolution.Fig. 13shows
all the toolpaths.

Fig. 13. All toolpaths of Level2 RBT data structure (filament resolution
is 2).



S.C. Soo, K.M. Yu / Journal of Materials Processing Technology 139 (2003) 219–225 225

6. FDM toolpath format

From the previous sections, the toolpath data are simply
polylines or polygons. In order to make the fractal object
directly with the RP machine, the geometric information in
the toolpath has to be converted into a machine-readable
form. Here, the machine code will be in SML file format
of the FDM 1600 RP machine[7]. The toolpath informa-
tion required by the FDM 1600 machine is thex, y and z
coordinate values, which are also in ASCII. The file is then
downloaded to the FDM 1600 machine for physical fractal
object making.

7. Conclusions

A new data structure is designed. A layerwise traversal
of the data structure is also devised which is suitable for
fabricating a fractal solid with RP or CNC machining. For
instance, the method is applicable to stereolithography (SL),
FDM, three-dimensional printing (3DP) and solid ground
curing (SGC). In addition, the resolution of the toolpath can
be controlled by the number of cell nodes in the terminal
b-nodes.

Acknowledgements

The work described in this paper was supported by a grant
from the Research Grant Council of the Hong Kong Spe-
cial Administrative Region (Project No. PolyU 5141/98E)
and the Hong Kong Polytechnic University (Project No.
B-Q261).

References

[1] T.T. Wohlers, Rapid Prototyping and Tooling: State of the Industry,
Wohlers Associates, 1999.

[2] I. Zeid, CAD/CAM Theory and Practice, McGraw-Hill, New York,
1991.

[3] R. Jamieson, H. Hacker, Direct slicing of CAD models for rapid
prototyping, Rapid Prototyping J. 1 (2) (1995) 4–12.

[4] E. Sabourin, S.A. Houser, J.H. Bohn, Adaptive slicing using stepwise
uniform refinement, Rapid Prototyping J. 2 (4) (1996) 20–26.

[5] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New
York, 1982.

[6] K.J. Falconer, Techniques in Fractal Geometry, Wiley, New York,
1997.

[7] FDM 1600 Manual Release 2.0, Stratasys, 1995.


	Rapid prototyping for self-similarity design
	Introduction
	Fractal geometry
	Radial-blossoming tree (RBT) data structure
	Level_0 RBT data structure
	Higher level RBT data structure
	Terminal cell node

	The RBT data structure generation
	Initialise the RBT
	Level_1 RBT generation
	Higher level RBT generation

	Direct toolpath generation
	Traversal algorithm
	Vector annihilation

	Contour toolpath generation-circular traversal
	Area-filling toolpath generation-raster traversal

	FDM toolpath format
	Conclusions
	Acknowledgements
	References


