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Abstract.  Fractal proteins are a new evolvable method of mapping genotype to phenotype
through a developmental process, where genes are expressed into proteins comprised of subsets of
the Mandelbrot Set. The resulting network of gene and protein interactions can be designed by
evolution to produce specific patterns, that in turn can be used to solve problems. This chapter
introduces the fractal development algorithm in detail and describes the use of fractal gene
regulatory networks for learning a robot path through a series of obstacles. The results indicate the
ability of this system to learn regularities in solutions and automatically create and use modules.
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1   Introduction

Life is complex. This is true in the chemical interactions of proteins and genes within a single
cell, or in the cellular interactions in a multicellular organism. While evolution is mostly to
blame for this, there can be little doubt that complexity could not arise if the vast intricacies
of molecular interactions and physical forces were not present. Open-ended evolution
(evolution in which solutions get progressively more complex) relies on the right kind of
genetic representation in the right kind of environment. In nature, this is DNA – a molecule
that relies on chemical interactions in order to function.

Translating these ideas into computer science is not a simple prospect. As we know in
evolutionary computation, using a fixed binary string as a genotype, prohibits complexity
growth. But variable-length representations such as genetic programming do not guarantee an
increase in complexity either (unless you count introns as complexity). Even if a seemingly
ideal representation is found, often it is not evolvable, or it only achieves its complexity
increases through the careful high-level structures (e.g. modularity) imposed on it by the
developer.

This work takes a different approach. A developmental process maps variable-length
genotypes to phenotypes, through the use of fractal proteins. Genes are expressed into
complex fractal shapes (subsets of the Mandelbrot Set) that interact according to their forms.
The resulting network of gene interactions can be designed by evolution to produce specific



gene activation patterns, that in turn can be used to solve problems. In this chapter the use of
fractal gene regulatory networks for learning a robot path through a series of obstacles is
described.

2 Background

2.1 Development

Development is the set of processes that lead from egg to embryo to adult. Instead of using a
gene for a parameter value as we do in standard EC (i.e., a gene for long legs), natural
development uses genes to define proteins. If expressed, every gene generates a specific
protein. This protein might activate or suppress other genes, might be used for signalling
amongst other cells, or might modify the function of the cell it lies within. The result is an
emergent “computer program” made from dynamically forming gene regulatory networks
(GRNs) that control all cell growth, position and behaviour in a developing creature (Wolpert
et al, 2001). An introduction to biological development can be found in (Bentley, 2002), with
greater detail in (Wolpert et al, 2001) and (Kumar and Bentley, 2003a).

There is currently much research being performed on computational development. Problems
of scalability, adaptability and evolvability have led many researchers to attempt to include
processes such as growth, morphogenesis or differentiation in their evolutionary systems
(Jackson and Tyrrell 2002, Sipper 2002, Miller and Banzhaf 2003). However, research
focussing on the creation of GRNs are less common in Computer Science. Jakobi (1995) was
one of the first to explicitly design a system which enabled (and even extracted) GRNs,
which were then used to develop neural networks for controlling robots. Jakobi’s genetic
representation was highly flexible, but had no real concept of chemistry to affect his proteins.
While Jakobi was enthused by the results at the time, the subsequent lack of further
development implies that his proposed representations were not as evolvable as first thought.
Another example is the work of Eggenberger (1997), which still remains impressive,
demonstrating the use of gene behaviours such as regulation, and cellular behaviours such as
differentiation and simple morphogenesis. Eggenberger modelled biological development in
some detail, and showed how different forms made from cell clusters could be evolved using
these techniques. Nevertheless, Eggenberger’s work has little concept of gene expression or
protein folding, and the evolvability and scalability of his system remains open to question.
More recently, Bongard (2002) continues research that follows many of Eggenberger’s ideas.
He describes the use of GRNs to generate morphologies and neural networks of simple
robots within a physics simulator. Again his work captures many features of biological
development, and even shows the spontaneous creation of modularity within genotypes.
However his “GRNs” are unusual in that they often do not appear to act in autocatalytic
loops (i.e., they seem to be gene regulatory trees rather than networks), removing many of
the advantages gained by more normal “looping” GRNs. Other examples include the work of
Kennedy (1999) and the early work of Rosenberg (1967).

Researchers such as Hornby (2003), Bongard (2002), and Kumar and Bentley (2003) have
demonstrated that various types of development can enable smaller genotypes to represent
more complex phenotypes through the ability of development to discover modularities and



repetition. Other scientists in the field have been focussing on the ability of developmental
methods to enable self-repairing behaviour and graceful degradation of solutions. For
example, the work of Andy Tyrrell and his group create fault-tolerant hardware inspired by
ideas of embryology and immune systems (Jackson and Tyrrell, 2002). This is being
performed in collaboration with Moshe Sipper (2002) who has demonstrated a simple self-
repair capability for electronic circuits by the use of cellular-automata-like “biodules”. Using
ideas inspired from embryology, the circuits can functionally self-organise, while redundant
biodules enable damage to be overcome. Adrian Thompson has spent some years
investigating how evolvable hardware can provide robust solutions, for example circuits that
handle large variations in temperature and fabrication, by testing designs in different
environments during evolution (Thompson and Layzell, 2000). More recently, Julian Miller
has described experiments evolving developmental programs to create “French Flag” patterns
(Miller and Banzhaf, 2003). He shows that development is able to regenerate these patterns.
Current work by Mahdavi and Bentley (2003) demonstrates how adaptive evolutionary
control can enable a “Smart Snake” to redevelop new movement strategies even after the loss
of a crucial muscle (Nitinol wire). However, work on applying developmental algorithms to
robot control is less common. Most seem to rely on the development of neural networks that
are then used to control motion (and in some cases generate form) (Jakobi 1995; Hornby,
2003; Bongard 2002).

Research performed in collaboration with the author has been focusing on development for
some years (e.g. see (Kumar and Bentley, 2003a,b)). Kumar, (with Wolpert) has developed
extensive modelling software capable of evolving genes that are expressed into proteins,
forming GRNs that control the expression of the genes and the development (growth,
placement, function) of cells (Kumar and Bentley 2003c). Gordon has been investigating the
use of development-inspired evolutionary systems for evolvable hardware, which makes use
of ideas such as differentiation and growth (Gordon and Bentley 2002).

The research described here complements these systems, by focusing on methods to enrich
the genetic space in which evolution searches. Specifically, this paper introduces the novel
idea of fractal proteins. Here, a gene defines a protein constructed from a subset of the
Mandelbrot Set. This can be contrasted with the simple artificial chemistries by Bagley,
Farmer and others (Bagley et al, 1991, Farmer et al 1986). As will be shown, fractal proteins
enable substantially more complex interactions than simple string-matching systems.

2.2 Mandelbrot Set

Given the equation xt+1 = xt
2 + c where xt and c are imaginary numbers, Benoit Mandelbrot

wanted to know which values of c would make the length of the imaginary number stored in
xt stop growing when the equation was applied for an infinite number of times. He discovered
that if the length ever went above 2, then it was unbounded – it would grow forever. But for
the right imaginary values of c, sometimes the result would simply oscillate between
different lengths less than 2.

Mandelbrot used his computer to apply the equation many times for different values of c. For
each value of c, the computer would stop early if the length of the imaginary number in xt



was 2 or more. If the computer hadn’t stopped early for that value of c, a black dot was
drawn. The dot was placed at coordinate (m, n) using the numbers from the value of c: (m +
ni) where m was varied from –2.4 to 1.34 and n was varied from 1.4 to -1.4, to fill the
computer screen. The result was the infinite complexity of the “squashed bug” shape we
know so well today (Mandelbrot, 1982).

3 Fractal Proteins

In this work, a biologically plausible model of gene regulatory networks is constructed
through the use of genes that are expressed into fractal proteins – subsets of the Mandelbrot
set that can interact and react according to their own fractal chemistry. The motivations
behind this work can be listed as follows:

1. Natural evolution extensively exploits the complexity, redundancy and richness of
chemical systems in the design of DNA and the resulting developmental systems in
organisms. Providing a computer system with genes that define fractal proteins gives the
system complexity, redundancy and richness to exploit.

2. It is extremely difficult and computationally intensive to model natural chemical systems
accurately in an artificial chemistry. Fractal proteins have many of the same properties as
natural proteins, without any modelling overheads.

3. A fractal protein (with the infinite complexity of the Mandelbrot set) can be defined by
just three genes.

4. The “fractal genetic space” is highly evolvable – a small change to a gene produces a
small change to the fractal protein, while the self-similarity of fractals ensures that any
specific shape can be found in an infinite number of places.

5. When fractal proteins are permitted to interact according to their morphologies, a hugely
complex (and eminently exploitable) fractal chemistry emerges naturally.

6. Calculating subsets of Mandelbrot sets is fast so there is little overhead.

Further motivations and discussions on fractal proteins are provided in (Bentley, 2003a,b,c).
Table 1 describes the object types in the representation; Figure 1 illustrates the
representation. Figure 2 provides an overview of the algorithm used to develop a phenotype
from a genotype. Note how most of the dynamics rely on the interaction of fractal proteins.
Evolution is used to design genes that are expressed into fractal proteins with specific shapes,
which result in developmental processes with specific dynamics.

Table 1. Types of objects in the representation

fractal proteins defined as subsets of the Mandelbrot set.

Environment contains one or more fractal proteins (expressed from the environment
gene(s)), and one or more cells.



gene(s)), and one or more cells.

Cell contains a genome and cytoplasm, and has some behaviours.

Cytoplasm contains one or more fractal proteins.

Genome comprising structural genes and regulatory genes. In this work, the
structural genes are divided into different types: cell receptor genes,
environment genes and behavioural genes.

regulatory gene comprising operator (or promoter) region and coding (or output) region.

cell receptor gene a structural gene with a coding region which acts like a mask, permitting
variable portions of the environmental proteins to enter the corresponding
cell cytoplasm.

environment gene a structural gene which determines which proteins (maternal factors) will
be present in the environment of the cell(s).

behavioural gene structural gene comprising operator and cellular behaviour region.

Environment

Cell
Cytoplasm

Genome Fractal
proteins

Fractal
proteins

Environment gene
Cell recepter gene
Regulatory gene
Behavioural gene

FRACTAL DEVELOPMENT

For every cell in the embryo:

For every developmental time step:

Express all environment genes and
calculate shape of merged environment fractal proteins

Express cell receptor genes as receptor fractal proteins
and use each one to mask the merged environment proteins
into the cell cytoplasm.

If the merged contents of the cytoplasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fractal protein to the cytoplasm.

If the merged contents of the cytoplasm match a promoter of a
behavioural gene, use coding region of the gene to specify a
cellular function.

Update the concentration levels of all proteins in the cytoplasm.
If the concentration level of a protein falls to zero, that protein
does not exist.

Fig. 1. Representation using fractal
proteins.

Fig. 2. The fractal development algorithm.

It should be noted that the system used for the experiments in this chapter is an extended
version of systems described elsewhere. While the detail provided below is in some respects
a distraction from the theme of this paper, for reasons of reproducibility it is provided in full.



3.1 Defining a Fractal Protein

In more detail, a fractal protein is a finite square subset of the Mandelbrot set, defined by
three codons (x,y,z) that form the coding region of a gene in the genome of a cell. Each (x, y,
z) triplet is expressed as a protein by calculating the square fractal subset with centre
coordinates (x,y) and sides of length z, see fig. 3 for an example. In this way, it is possible to
achieve as much complexity (or more) compared to natural protein folding in nature.

In addition to shape, each fractal protein represents a certain concentration of protein (from 0
meaning “does not exist” to 200 meaning “saturated”), determined by protein production and
diffusion rates.

Fig. 3. Example of a fractal protein defined by (x=0.132541887, y=0.698126164,
z=0.468306528)

3.2 Fractal Chemistry

Cell cytoplasms and the environment usually contain more than one fractal protein. In an
attempt to harness the complexity available from these fractals, multiple proteins are merged.
The result is a product of their own “fractal chemistry” which naturally emerges through the
fractal interactions.

Fractal proteins are merged (for each point sampled) by iterating through the fractal equation
of all proteins in “parallel”, and stopping as soon as the length of any is unbounded (i.e.
greater than 2). Intuitively, this results in black regions being treated as though they are
transparent, and paler regions “winning” over darker regions. See fig 4 for an example.

        



Fig. 4. Two fractal proteins (left and middle) and the resulting merged fractal protein
combination (right).

3.3 Calculating concentration levels

The total concentration of two or more merged fractal proteins is the mean of the different
concentrations seen in their merged product. For example, fig. 4 shows how fractal proteins
are merged to form a new fractal shape. Figure 5 illustrates the resultant areas of different
concentration in the product. When being compared to the (xp, yp, zp) promoter region of a
gene (the “conditional” part of the gene to be matched, see later section on genes), the
concentration seen on that promoter is described by all those regions that “fall under” the
promoter, see fig. 5. In other words, the merged product is masked by the promoter fractal,
and the total concentration on the promoter is the mean of the resulting concentrations, see
fig. 6.

        

Fig. 5. The different concentrations of the two fractal proteins (left and middle) and the
concentration levels in their merged product (right).

      

Fig. 6. The shape of the desired protein as defined by a promoter (left), the shape and
concentration levels of merged proteins in the cytoplasm (middle) and the concentration
levels seen on that promoter (right), where total concentration is taken as mean. Note that
although a merged protein may decrease affinity (similarity) to the promoter, should the
second protein have a higher concentration level to the first, it will boost overall
concentration seen by the promoter, i.e., act like a catalyst to speed up (or slow down, if
lower) the “reaction”.



3.4 Updating Protein Concentration Levels

Every time step the new concentration of each protein is calculated. This is formed by
summing two separate terms: the previous concentration level after diffusion (Dc) and the
new concentration output by a gene (Gc). These two terms model the reduction in
concentration of proteins over time, and the production of new proteins over time,
respectively, where:

Dc = Pc – Pc / Cp + 0.2 Equation 1
Pc is protein concentration in previous time step,
Cp is a constant normally set to 5;
the final addition of 0.2 ensures a minimum level of diffusion

and:
Gc = Tc × Cm,

Tc is the mean concentration seen at the promoter,
Cm is a concentration multiplier, where:

Cm = tanh((Tc – ct) / Cw) / Ci Equation 2
where: ct is the concentration threshold from the gene promoter

Cw is a constant (set to 30 for these experiments)
Ci is a constant (set to 2 for these experiments)

The value of Cp determines the rate of protein decay, and was set to provide a useful level.
(Increasing the value will reduce protein decay, extending the time proteins remain in the
cytoplasm. This might make longer timings possible, but could reduce control of short-term
concentration changes. Reducing the value will make proteins decay quickly, providing
better short-term control, but making long-term effects harder to achieve.) The values of Cw

and Ci determine the scaling of Gc with respect to Tc – the lower the values, the lower the
rate of increase of Gc as Tc increases.

Should a gene be activated (the affinity matches above/below the given threshold, and
concentration above zero, see earlier), it will produce the resultant protein. To do this, the
concentration of that protein is modified by incrementing with the result of a function of the
concentration threshold (ct) and the mean total concentration seen at the promoter (Tc), given
as Equation 2. In this way, higher concentrations of protein on the promoter will cause an
increased rate of output protein concentration growth, while lower concentrations (below the
ct threshold) will increase the diffusion rate of the output protein.

3.5 Genes

The environment gene, cell receptor gene, regulatory genes, and behavioural genes all
contain 7 real-coded values:

xp yp zp
Affinity

threshold
Concentration

threshold
x y z type



where (xp, yp, zp, Affinity threshold, Concentration threshold) defines the promoter (operator
or precondition) for the gene and (x,y,z) defines the coding region of the gene. The type value
defines which type of gene is being represented, and can be one or all of the following:
environment, receptor, behavioural, or regulatory. This enables the type of genes to be set
independently of their position in the genome, enabling variable-length genomes. It also
enables genes to be multi-functional, i.e. a gene might be expressed both as an environmental
protein and a behaviour.

When Affinity threshold is a positive value, one or more proteins must match the promoter
shape defined by (xp,yp,zp) with a difference equal to or lower than Affinity threshold for the
gene to be activated. When Affinity threshold is a negative value, one or more proteins must
match the promoter shape defined by (xp,yp,zp) with a difference equal to or lower than
|Affinity threshold| for the gene to be repressed (not activated).

To calculate whether a gene should be activated, all fractal proteins in the cell cytoplasm are
merged (including the masked environmental proteins, see later) and the combined fractal
mixture is compared to the promoter region of the gene.

The similarity between two fractal proteins (or a fractal protein and a merged fractal protein
combination) is calculated by sampling a series of points in each and summing the difference
between all the resulting values. (Black regions of fractals are ignored.) Given the similarity
matching score between cell cytoplasm fractals and gene promoter, the activation probability
Pa of a gene is given by:

Pa = (1 + tanh((m – At – Ct) / Cs)) / 2 Equation 3

where: m is the matching score,
At is Affinity threshold (the matching threshold from the gene promoter)
Ct is a threshold constant (normally set to 50)
Cs is a sharpness constant (normally set to 50)

Note that the values of Ct and Cs were chosen with respect to the range of values of m (which
depend on the sampling resolution used, but in the experiments varied between 0 and around
10000) to provide a small, but distinct transitional region between probabilities. Using
smaller values of Ct and Cs makes the transition from probability 0 to 1 more discrete; larger
values makes the transition more gradual. With the values chosen, a small amount of noise is
produced (observed during tests in which the same calculation was repeatedly performed).
This noise is seen as actively beneficial to evolution in this context, enabling it to sample the
effects of alternative activations occasionally as it fine-tunes values for At.

Regulatory gene. Should a regulatory gene be activated by other protein(s) in the cytoplasm
(which have concentrations above 0) matching its promoter region, its corresponding coding
region (x,y,z) is expressed (by calculating the subset of the Mandelbrot set) and new
concentration level calculated. To do this, the concentration of the resulting protein is
modified by incrementing with geneoutputconc, the result of a function of the concentration
threshold (ct) and the mean total concentration seen at the gene promoter (totalconc), as
given earlier. In this way, higher concentrations of protein on the promoter will cause an
increased rate of output protein concentration growth, while lower concentrations (below the



ct threshold) will increase the diffusion rate of the output protein (its concentration will
decrease at a higher rate).

The cell cytoplasm, which holds all current proteins, is updated at the end of the
developmental cycle.

Cell receptor gene. At present, the promoter region of the cell receptor gene is ignored, and
this gene is always activated. As usual, the corresponding coding region (x,y,z) is expressed
by calculating the subset of the Mandelbrot set. However, the resultant fractal protein is
treated as a mask for the environmental proteins, where all black regions of the mask are
treated as opaque, and all other regions treated as transparent. For an example, see fig. 7.
This means that the more similar a protein or protein compound is to the receptor, the more
likely it will be permitted into the cytoplasm intact. This coincides nicely with cell receptors
in nature, which are under genetic control and selectively permit specific proteins through the
cell wall into the cytoplasm.

        

Fig. 7. Cell receptor protein (left), environment protein (middle), resulting masked protein to
be combined with cytoplasm (right).

Environment Gene. Like the cell receptor gene, this gene is always activated. It produces
environmental factors for all cells: fractal proteins of concentration 200. If there is more than
one environmental gene, the expressed environmental proteins are merged before being
masked by the receptor protein.

Behavioural Gene. A behavioural gene is activated when other protein(s) in the cytoplasm
match its promoter region (using the affinity threshold). For this application, a gradual
activation between not activated and activated was required, using the x value of the coding
region (x,y,z) triplet as a fate value to define a function, calculated as follows:

If the gene is being activated with a negative Affinity threshold,
output = output _ (totalconcentration _ concentrationthreshold) _ fate

If the gene is being activated with a positive Affinity threshold,
output = output + (totalconcentration _ concentrationthreshold) _ fate

Note how the total concentration of proteins seen on the promoter is offset against the
Concentration Threshold gene and scaled by the fate gene (x value of the coding region),
allowing evolution to adjust the range of values seen on the output, and used to specify
behaviours. (If there are more behavioural genes than are required, the resultant behaviour
will be the sum behaviour of all genes.)



3.6 Fractal Sampling

All fractal calculations (masking, merging, comparisons) are performed at the same time, by
sampling the fractals at a resolution of 15x15 points. Note that the comparison is normally
performed between the single fractal defined by (xp,yp,zp) of a gene and the merged
combination of all other proteins currently in the cytoplasm. The fractal being compared is
treated a little like the cell receptor mask – only those regions that are not black are actually
compared with the contents of the cytoplasm.

3.7 Development

As was illustrated in figure 2, an individual begins life as a single cell in a given
environment. To develop the individual from this zygote into the final phenotype, fractal
proteins are iteratively calculated and matched against all genes of the genome. Should any
genes be activated, the result of their activation (be it a new protein, receptor or cellular
behaviour) is generated at the end of the current cycle. Development continues for d cycles,
where d is dependent on the problem. Note that if one of the cellular behaviours includes the
creation of new cells, then development will iterate through all genes of the genome in all
cells.

3.8 Evolution

The genetic algorithm used in this work has been used extensively elsewhere for other
applications (including GADES (Bentley 1999)). A dual population structure is employed,
where child solutions are maintained and evaluated, and then inserted into a larger adult
population, replacing the least fit. The fittest n are randomly picked as parents from the adult
population. The degree of negative selection pressure can be controlled by modifying the
relative sizes of the two populations. Likewise the degree of positive selection pressure is set
by varying n. When child and adult population sizes are equal, the algorithm resembles a
canonical or generational GA. When the child population size is reduced, the algorithm
resembles a steady-state GA. Typically the child population size is set to 80% of the adult
size and n = 40%. (For further details of this GA, refer to (Bentley 1999).)

Unless specified, alleles are initialised randomly, with (xp,yp,zp) and (x,y,z) values between -
1.0 and 1.0 and thresh between -10000 and 10000. The ranges and precision of the alleles are
limited only by the storage capacity of double and long ‘C’ data types – no range constraints
were set in the code.

Genetic Operators. Genes are real-coded, but genomes may comprise variable numbers of
genes. Given two parent genomes, the crossover operator examines each gene of parent1 in
turn, finding the most similar gene of the same type in parent 2. Similarity is measured by
calculating the differences between values of operator and coding regions of genes. One of
the two genes is then randomly allocated to the child. If the genome of parent2 is shorter, the
child inherits the remaining genes from parent 1. If the genomes are the same length, this
crossover acts as uniform crossover.



Mutation is also interesting, particularly since these genes actually code for proteins in this
system. There are four main types of mutation used here:

1. Creep mutation, where (xp,yp,zp) and (x,y,z) values are incremented or decremented by a
random number between 0 and 0.5, Affinity Threshold is incremented or decremented by a
random number between 0 and 16384 and Concentration Threshold is incremented or
decremented by a random number between 0 and 200.

2. Duplication mutation, where a (xp,yp,zp) or (x,y,z) region of one gene randomly replaces a
(xp,yp,zp) or (x,y,z) of another gene. (This permits evolution to create matching promoter
regions and coding regions quickly.)

3.  Gene mutation, where a random gene in the genome is either removed or a duplicate
added.

4.  Sign flip mutation, where the sign of Affinity Threshold is reversed.

Crossover is always applied; all mutations occur with probability 0.01 per gene.

4 Robot Control

Previous work has demonstrated how evolution can generate specific fractal proteins that
interact with each other in order to produce desired patterns of behavioural gene activation
(Bentley 2003a,b,c). Here the two behavioural genes are used to generate commands for a
robot, with the aim of directing the robot past obstacles in its environment and reach a
destination. So instead of directing cellular behaviour (i.e., cell division, differentiation or
death), the fractal gene regulatory networks will direct robot behaviour. Although the tasks
are clearly very different, both do rely on precise timing and accuracy, and both make use of
the inherent pattern-generating properties of GRNs.

4.1   Robot

The platform used was a palm-sized six-legged robot known as a wonderborgTM, produced
by Bandai, see Fig. 8. Although not widely available outside Japan, the robot boasts several
useful features: it is programmed via infrared communications, and once programmed it runs
fully autonomously. It has two forward-facing infrared collision detectors, a bottom-facing
infrared floor sensor, an upwards facing light sensor and two microswitch touch sensors or
feelers. Its legs are driven by two motors (one for the legs on each side), operating like a
tracked vehicle, and allowing it to walk where Khepera robots cannot.



Fig. 8. The wonderborgTM robot (Bandai) has six legs, two feelers, two infrared collision detection sensors, a floor
sensor, a light sensor and capabilities for the addition of a further motor and sensor.

4.2   Mapping Genes to Movement

The wonderborgTM was not designed as a research platform, so unfortunately suffers from
certain drawbacks. Currently the only way to send a program to the robot is through Bandai’s
proprietary software which forces the use of high-level commands and programming
structures. In some cases these commands are useful, for example those that send specific
infrared signals or detect specific signals (for use in inter-robot communications). But all
movement commands are also high-level (e.g. “Rotate right” or “Back up left”), prohibiting
the independent control of motors. Although a translation from independent motor
commands to the high-level commands is theoretically possible, the proprietary software also
has a fairly small capacity for storing the commands, limiting this option. To overcome these
difficulties, the two behavioural genes were treated as “steering” and “acceleration,” and then
their values were mapped onto the appropriate high-level commands. For example, a positive
value for the steering gene is taken to mean “steer right” and a value of -3 for the acceleration
gene is taken to mean “move -3 backwards” (move back three steps), see table 2. The fractal
development system was then modified to convert the patterns of gene activation produced
during development into a robot control file in the appropriate format for the proprietary
software.

Table 2. Values of the steering and acceleration genes are mapped to the nine predefined robot commands

Steering Acceleration Robot command Symbol
(n=1)

0 (None) 0 (None) Halt
-ve (Left) 0 (None) Rotate left
+ve (Right) 0 (None) Rotate right

0 (None) n (n forwards) Advance by n
-ve (Left) n (n forwards) Turn left by n
+ve (Right) n (n forwards) Turn right by n

0 (None) -n (n backwards) Back up by n
-ve (Left) -n (n backwards) Back up left by n
+ve (Right) -n (n backwards) Back up right by n

4.3   Simulator

Finally, to enable high-speed evaluation of robot control programs, a wonderborgTM

simulator was created. This reads the same file format as used by Bandai’s proprietary



software (and as output by the fractal developmental system) and calculates the path of the
robot through an environment. Because the wonderborgTM has various interchangeable legs,
the simulator can be calibrated (in terms of noise and movement) for different setups. (Note
that some of the legs make control almost impossible, with noise of 10% in distance travelled
and 20% in rotational angle per command. The experiments used the simulator calibrated for
a more reliable setup.) The simulator was designed to be fast – on a 1 Ghz PC, approximately
40 developmental cycles and corresponding robot control simulations occur every second.

5 Experiments

Two sets of experiments were performed. The first used a simple environment with four
obstacles, the second used a more difficult environment with seven obstacles, see figure 9.
The robot simulator was initialised with the robot at one end of the environment. The further
the robot managed to walk across the environment the higher the fitness of the corresponding
controller. If the robot touched an obstacle or walked off the edges, its final position was
measured as its last valid position in the environment. Note that the controllers did not use
any of the robot’s sensors to gauge proximity of obstacles (which might have made the task
easier). Instead they specified a fixed path past the obstacles, learning the structure of the
environment through generations of “hitting its head against walls.” A second fitness
measure (of less importance than the first) was used to provide penalties corresponding to the
time taken by the robot and hence encourage efficient and fast journeys. (Without this, the
robots would often rotate many times on one spot for several seconds between each
movement in order to find the perfect angle.)

To evolve the controllers, the fractal development system was initialised with a single cell, 1
environment gene, 1 receptor gene, 2 behavioural genes and 6 regulatory genes. (Note that
with variable length genomes, evolution was free to modify these gene numbers). The
operator and coding regions of the genes were randomly initialised with the alleles that
defined 10 previously evolved protein fractals (Bentley, 2003a). 32 developmental steps were
employed, and the evolutionary algorithm used a population size of 100, running for up to
500 generations in the first experiment and 1500 in the second.

Fig. 9. The two environments used for the experiments. The starting position of the robot is marked with an “X.”
The higher (in the window) the robot manages to walk, the fitter the controller.
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Fig. 10.  Six examples of very fit controllers for the first experiment.
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Fig. 11.  Six examples of very fit controllers for the second experiment.



6 Results and Analysis

In the first experiment, 13 out of 20 produced robot controllers able to reach the top (500
generations). In the second experiment, only 1 out of 20 produced successful robot
controllers after 500 generations. When the GA was allowed to run for 1500 generations, 11
out of 20 produced robot controllers able to reach the top. The increase in success is further
evidence of evolvability of this representation (Bentley 2003a). Figs 10 and 11 show
examples of robot paths produced by fit controllers. The final controllers have been
confirmed by testing on the actual robot.

The results were surprisingly good. Despite the poor level of control available through the
high-level commands, evolution and development manage to create remarkably precise and
detailed robot paths, designed to avoid the obstacles in the environment. Significantly, these
controllers often employed “modules” or “subroutines” that were repeated (sometimes with
variations) to overcome the obstacles. This automatic discovery and exploitation of pattern in
the solution is very important, and also very unusual – most other systems (e.g. ADFs in GP
or parameterised L-Systems) must explicitly build in notions of modules. Here they emerge
naturally. To illustrate a little of how this happens, figure 12 displays protein concentrations
during development of the controller in fig 11c.
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Fig. 12.  Protein concentrations of the three main proteins used in controller shown in fig 11c. Note how steering
and acceleration are the result of interactions between oscillating protein concentrations, resulting in very
precisely controlled oscillating robot motion. The 32-step pattern is partially repeated in the final controller,
producing a total of 50 commands for the robot.

Fig. 13. The 32-step controller corresponding to the protein concentrations in Fig. 12 (read left to
right). Note that the sequence partially repeats (up to command 18) before the robot reaches its
destination.



In this solution, 50 commands are executed. The final genome comprises thirteen genes, out
of which the following are used: three regulatory genes producing three proteins, three
behavioural genes, one environment gene and three receptor genes. Figure 13 shows the
actual commands sent to the robot. Although this controller does not have a single, clearly
repeated “module” such as those evident in Fig. 11d and f, it has discovered that a
“subroutine” of turning left, followed by a “subroutine” of turning right is important.
Underlying the commands are repeated sequences of gene activations. These movements are
repeated until the robot reaches its destination, but the degree of the movements is subtly
modified in each repetition by the concentrations within the GRN, ensuring that the final
movement is asymmetrical and the robot avoids all obstacles.

Finally, it is clear that this system, although allowing variable genomes, does not behave in
the same manner as GP systems. Previous work has shown that genomes are just as likely to
remain constant or decrease in length as they are to increase in length (Bentley 2003c).

7 Conclusions

It is not a trivial task to find a suitable genetic representation that enables open-ended
evolution, while being evolvable, incorporating ideas of intricate chemical/physical
environments, and employing developmental processes. The use of genes expressed as fractal
proteins is the approach investigated in this paper. The work has shown that fractal gene
regulatory networks can be successfully designed by evolution to solve problems. Here, the
task of producing robot controllers capable of guiding a “bug” robot past obstacles in an
environment was demonstrated. In addition to creating diverse and useful controllers, the
fractal GRN also demonstrated an ability to identify patterns in solutions and create its own
modules (subsolutions that were reused and used with minor modifications). This automatic
learning, not just of a good solution (robot path), but of a way of building a good solution in
an efficient manner, is seen as a significant and important property of developmental
processes. Combine this with the results of previous research that shows a tendency towards
efficiency and fault-tolerance of fractal GRNs (Bentley 2003c), and the potential for this
technique looks impressive.
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