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abstract

 

Parametric Lindenmayer systems (L-systems) are formulated to generate branching tree structures
that can incorporate the physiological laws of arterial branching. By construction, the generated trees are de facto
fractal structures, and with appropriate choice of parameters, they can be made to exhibit some of the branching
patterns of arterial trees, particularly those with a preponderant value of the asymmetry ratio. The question of
whether arterial trees in general have these fractal characteristics is examined by comparison of pattern with vas-
culature from the cardiovascular system. The results suggest that parametric L-systems can be used to produce
fractal tree structures but not with the variability in branching parameters observed in arterial trees. These param-
eters include the asymmetry ratio, the area ratio, branch diameters, and branching angles. The key issue is that
the source of variability in these parameters is not known and, hence, it cannot be accurately reproduced in a
model. L-systems with a random choice of parameters can be made to mimic some of the observed variability, but
the legitimacy of that choice is not clear.
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I N T R O D U C T I O N

 

The branching structure of vascular systems has been
the subject of much discussion and debate since it was
first suggested that these systems may have fractal archi-
tecture (Mandelbrot, 1977). The great variety of vascu-
lar systems in biology, and the apparent similarity be-
tween the branching structure of such diverse systems
as blood arteries (Murray, 1926a,b), botanical plants
(Prusinkiewicz and Lindenmayer, 1990), neural systems
(Berry and Pymm, 1981), and rivers (Horton, 1945),
make the subject somewhat intractable when it comes
to the study of form as it relates to function. For a
meaningful discussion, the subject must clearly be nar-
rowed. In this paper, the focus is on arterial systems as-
sociated with hemodynamics primarily in mammals.

 

There is no doubt that even here the entire spectrum
of vascular systems cannot be treated in the same way.
The vascular system of the kidney (Moffat, 1979), for ex-
ample, serves a filtration function in which the number
of branches and ultimate filtration units is important
but their location is not. The same can be said of the
lung’s airways and pulmonary arteries, the ultimate
functional units in this case being the alveoli where oxy-
gen exchange takes place (Weibel, 1984). In the core of
the systemic arterial system, on the other hand, the
main business of vasculature is to reach certain organs
or destinations within the body and to bring blood sup-
ply to these destinations in appropriate quantities. An-

other system of vessels within each organ or destination
then does the same on a smaller scale. In these systems,
the distribution of branches and subbranches is highly
nonuniform because it is determined by reasons of anat-
omy and local flow requirements (Fig. 1). By contrast,
in the lungs and kidneys, the functional units are
packed neatly together and the required vasculature is
set in a fairly uniform manner (Fig. 2).

These considerations suggest that discussion of frac-
tal properties of vascular systems, if it is to relate to
function, should be limited to particular categories of
systems rather than collectively to all. In this paper, the
focus is on arterial systems in the systemic circulation
whose main function is the distribution and delivery of
blood, rather than filtration or other processing func-
tions. These systems are found to have a predominantly
open tree structure and include large and small vessels
up to, but not including, the capillary bed. Capillary
beds are not included because they are of a different
category and their branching structure, characterized
by interconnections and closed loops, requires separate
treatment (Weibel, 1984).

The term “arterial tree” shall be used generically to
mean the branching structure of a main artery in the
systemic circulation from its source to its final branches
as they reach the capillary bed, but not including the
latter. It may represent the aorta from its origin at the
left ventricle and include its entire distribution or a
smaller system such as that of a coronary artery. It has
been found that these and other arterial trees in the
systemic circulation have an open tree structure based
on repeated bifurcations. This structure is a fractal
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structure in the sense that each level of the tree is ob-
tained from that preceding it by dichotomous division.
However, in the context of physiology, this fractal char-
acter is not useful unless the dichotomous divisions are
allowed to have the range of properties that arterial bi-
furcations in the cardiovascular system are known to
have (Zamir, 1999). These properties include rela-
tions between diameters of the three vessels involved at
an arterial bifurcation and the angles that the two
branches make with the direction of the parent vessel.
The object of this paper is to incorporate these proper-
ties into a so-called parametric L-system to produce
open tree structures that are both fractal in character
and physiological in their branching properties.

 

M A T E R I A L S  A N D  M E T H O D S

 

The fractal properties of an arterial tree may be discussed in
terms of its “fractal dimension” (Peitgen et al., 1992), which in

 

turn may be defined in terms of some power law progression of a
functional or geometrical property along the tree such as flow
rate, velocity, branch length, or diameter. This method has met
with some difficulty because it is usually based on the assumption
of symmetrical and uniform branching at all levels of the tree.
Data from the arterial tree (Zamir and Brown, 1982) indicate con-
siderable nonsymmmetry and nonuniformity. Fractal dimension
can also be defined by the so-called “box-counting” method,
which essentially determines the space-filling property of the tree
(Peitgen et al., 1992). The difficulty with this method for the
present purpose is that it does not differentiate between an open
tree structure and one in which there are interconnections be-
tween branches. Two such structures may have the same fractal di-
mension by virtue of their space-filling properties, but have widely
different structures in their fluid dynamic design and function. A
way of discussing fractal properties that is particularly suited to
open tree structures and that is used in this paper is that of con-
sidering L-system models by which the tree can be generated.

Since its inception, L-system formalism has been used and vali-
dated as a tool. In plants, where it was first used, its power and
utility was measured by its ability to generate the branching pat-
terns of trees and bushes observed in nature. The test is a qualita-
tive one, not quantitative, and the same approach is being used

Figure 1. A reasonably complete cast of the arterial system of a
rat (Zamir et al., 1983). Branching is highly nonuniform and is dic-
tated by reasons of anatomy, local flow requirements, and other
constraints.

Figure 2. A close up of the vasculature of the kidney, from a cast
of the arterial system of a rat (Zamir and Phipps, 1987. By permis-
sion of NRC Research Press). The branching pattern appears more
uniform overall, but on the local scale of individual bifurcations
there is considerable variability in the size and angle of branches.
This suggests that variability is present even when vasculature is
free to develop in a strictly uniform pattern as it is in this case.
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in this paper. We look at whether known patterns in arterial
branching can be mimicked by patterns produced within the
confines of L-system formalism.

 

Basic L-System Branching Model

 

L-system formalism is particularly suited to open tree structures
because it has a “grammar” especially developed for repeated
branching. Although the formalism was originally developed for
botanical structures, its language carries directly to arterial struc-
tures. Following that language and notation (Prusinkiewicz and
Hanan, 1989; Prusinkiewicz and Lindenmayer, 1990), a basic L-sys-
tem model for a tree structure consisting of repeated bifurca-
tions, with axiom 

 

�

 

 and production rule 

 

p

 

, is given by:

 

(1)
ω : X

p : X F X–[ ] X+[ ] ,→

 

where 

 

F

 

 represents a line of unit length in the horizontal direc-
tion and 

 

X

 

 is an auxiliary symbol that has no graphical represen-
tation but plays an essential role in the branching process. The
square brackets represent the departure from ([) and return to
(]) a branch point, whereas the plus and minus signs represent
turns through a given angle 

 

�

 

 in the clockwise and anticlockwise
directions, respectively. The first four stages of a tree produced
by this system, denoted by 

 

n 

 

� 

 

1–4, are then given by:

 

(2)

 

and the results are shown graphically in Fig. 3. Note that the tree
is perfectly symmetrical and has uniform properties. Asymmetry
and variable properties are introduced later.

 

Fractal Character

 

The fractal character of the tree produced in the previous sec-
tion is evident by the fact that its growth from one stage to the
next is achieved by the same production rule, namely that de-
fined by 

 

p

 

 in system 1. It is also evident by the self-similarity of the
tree structure, namely the fact that any subtree taken from the
tree as a whole has the same (dichotomous branching) structure
as the whole. This self-similarity property can be expressed more
rigorously within the L-system formalism by adopting a somewhat
different L-system model for generating the tree, namely:

 

(3)

 

The first four stages of the tree are given by:

 

(4)

 

and the results are shown in Fig. 4. An important difference be-
tween this L-system and that of the previous section is that the pro-
duction rule here, although producing the same tree structure as
that produced by system 1, involves graphical duplication of some
branch segments at each production beyond 

 

n 

 

� 

 

2. At 

 

n 

 

� 

 

1, the
first junction point is produced and thereafter the graphical “tur-
tle” always returns to that point after tracing each of the two sides
of the tree arising from that junction. If each of the duplications is
treated as an overwriting of the existing segment, then the result-
ing tree is graphically the same as that produced by system 1.

An important advantage of this system, however, is that it pro-
vides a more explicit expression of the self-similarity property of
the tree by making it possible to define any stage of the tree as an
axiom, and then applying the same production rule to that ax-
iom to produce the tree. In particular, taking the second stage of
the tree in system 4 as an axiom, we obtain the following system:

 

(5)

 

The first three stages of the tree are given by:

n 1= X

n 2= F X–[ ] X+[ ]
n 3= F F–[ X–[ ] X+[ ] ] F+[ X–[ ] X+[ ] ]
n 4= F F–[ F–[ X–[ ] X+[ ] ] F+[ X–[ ] X+[ ] ] ]

F+[ F–[ X–[ ] X+[ ] ] F+[ X–[ ] X+[ ] ] ],

ω : F

p : F F F–[ ] F+[ ] .→

n 1:= F

n 2:= F F–[ ] F+[ ]
n 3:= F F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ]
n 4:= F F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ]

F–[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ]
F+[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ],

B F F–[ ] F+[ ]≡

ω : B

p: B B B–[ ] B+[ ] .→

Figure 3. (top) The first four stages of a tree generated by sys-
tem 1. The first X corresponds to the initial stage of production
(n � 1), and since X has no graphical representation, it produces
nothing in the left column. (bottom) The eighth stage of a tree
generated by this L-system. The tree has the dichotomous branch-
ing pattern characteristic of arterial trees, but its uniformity is
highly noncharacteristic of arterial trees.
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(6)

and the results are shown in Fig. 5. Similarly, taking the third
stage of the tree in system 4 (or the second stage of the tree in
system 6) as an axiom, we obtain the following system:

(7)

The first three stages of the tree are now given by:

(8)

and the results are shown in Fig. 6. Comparison of the three
L-systems shows that the production rules in systems 5 and 7 are
identical in form to the production rule in system 3. Indeed, this
bracketed form is the generator of dichotomy in the three cases.

The key difference between these two systems and that of the
previous section is that production here proceeds in terms of B
or C without any reference back to F once the symbols B and C
have been defined. This feature is illustrated graphically in Figs.
5 and 6. The lowest building unit here is not F but B or C as the

n 1:= B

n 2:= B B–[ ] B+[ ]
n 3:= B B–[ ] B+[ ] B–[ B–[ ] B+[ ] ] B+[ B–[ ] B+[ ] ],

B F F–[ ] F+[ ]≡
C B B–[ ] B+[ ]≡

ω : C

p : C C C–[ ] C+[ ] .→

n 1:= C

n 2:= C C–[ ] C+[ ]
n 3:= C C–[ ] C+[ ] C–[ C–[ ] C+[ ] ] C+[ C–[ ] C+[ ] ],

Figure 4. The first four stages of the modified structure defined
in system 3. The dashed segments in stages 3 and 4 indicate seg-
ments where duplication or “overwriting” has occurred.

Figure 5. The first three stages of the modified structure de-
fined in system 5, where a subtree B is used as an axiom instead of
the basic line step F. Production steps can be seen to proceed only
in terms of B (not F ), as illustrated schematically in the second and
third stage. As before, the dashed units refer to duplication or
overwriting. The branches are displaced sideway from each other
only to make them graphically visible.

Figure 6. The first three stages of the modified structure de-
fined in system 7 where a subtree C is used as an axiom instead of
the basic line step F. Production steps can be seen to proceed only
in terms of C (not F ), as illustrated chematically in the second and
third stage. As before, the dashed units refer to duplication or
overwriting. The branches are displaced sideway from each other
only to make them graphically visible.
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case may be and as illustrated in these figures. The fact that B or
C can be any stage of the tree while the production rule remains
unchanged provides an algorithmic expression of self-similarity
and of fractal character. This rather elegant expression of self-
similarity is not possible with system 1 since, in that system, F con-
tinues to appear explicitly in the production rule.

Although system 3 has the problem of duplication or overwrit-
ing of branch segments as discussed earlier, this is balanced by the
advantage that production here can be “speeded up” considerably
by taking a larger and larger subtree as axiom. This can have signif-
icant advantage both graphically, as illustrated in Figs. 5 and 6, and
algorithmically. Indeed, in terms of F, the algorithmic expression
for the third stage of the tree in system 8 would be the following:

(9)

compared with the much simpler expression in terms of C in sys-
tem 8.

Elements of Arterial Branching

As stated earlier, arterial trees have been found to consist of prima-
rily dichotomous branching, the basic structural unit of the tree
being an arterial “bifurcation,” whereby an arterial segment di-
vides into two branches and then each of the branches goes on to
do the same, and so on (Zamir and Brown, 1982). If the diameter
and length of an arterial segment are denoted by d, and l, respec-
tively, and if at an arterial bifurcation subscripts 0, 1, and 2 are
used to identify the parent segment and its two branches, then the
basic properties at that bifurcation are d0, d1, d2 and l0, l1, and l2, as
shown schematically in Fig. 7. Another two important properties

n 3:= F F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ]
F–[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ]
F+[ F–[ F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ]

F–[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ]
F–[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ]
F+[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ] ]
F+[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ]

F–[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ]
F+[ F–[ ] F+[ ] F–[ F–[ ] F+[ ] ] F+[ F–[ ] F+[ ] ] ] ]

are the angles �1 and �2, which the two branches make with the di-
rection of the parent segment (Fig. 7). In what follows, the conven-
tion is used that all properties with subscript 1 refer to the branch
with the larger diameter, i.e., the inequality d1 � d2 is always as-
sumed to apply, except, of course, when the two branch diameters
are equal. This allows the definition of a useful parameter, some-
times referred to as the bifurcation index or asymmetry ratio:

(10)

which has the convenient range of values 0–1.0. The index is a mea-
sure of the asymmetry of the two diameters at an arterial bifurca-
tion, with � � 1.0 when the two diameters are equal, and � � 0
when one of the two diameters is very much larger than the other.

One of the most fundamental laws underlying the structure of
arterial trees is that relating the diameter d of an arterial segment
to the flow rate q, which the segment is destined to carry. A classi-
cal result obtained by Murray (1926a) prescribes a “cube law” re-
lationship, namely q � d 3. The result is based on a compromise
between the power required to drive steady flow through the ves-
sel, which varies as d	4, and the rate of expenditure of metabolic
energy required to maintain the volume of blood filling the ves-
sel, which varies as d 2. Data from the cardiovascular systems of
humans and animals have given the law considerable support,
though with a great deal of scatter (Rodbard, 1975; Hutchins et
al., 1976; Mayrovitz and Roy, 1983). Other power laws of the form
q � d k have been considered, with values of k different from three
(Sherman, 1981; Roy and Woldenberg, 1982; Woldenberg and
Horsfield, 1983). There are some indications that at the higher
end of the arterial tree, the value of k is close to two, whereas in
the core of the tree and the precapillary end it is close to three
(Zamir et al., 1992; West et al., 1997). However, a clear picture
has not been established because the scatter in physiological data
makes it difficult to distinguish accurately between the two. Nev-
ertheless, many theoretical studies continue to be based on the
cube law because of its clear theoretical basis and because it has
been tested widely against physiological data. For the same rea-
sons, the cube law is used in this paper to provide the required
parameters for L-system algorithms. A different power law can be
used instead, in a fairly straightforward manner.

Application of the cube law at an arterial bifurcation provides
the basis for its role in arterial branching. Conservation of flow
rate at an arterial bifurcation requires that flow rate in the parent
vessel equals the sum of flow rates in the two branches (Fig. 7),
i.e., q0 � q1 
 q2. Application of the cube law then converts this
into a relation between the diameters of the three vessels, namely

 and the following two diameter ratios can then be
defined in terms of �:

(11)

Another important parameter is the ratio � of branch length to
the length of the parent vessel at an arterial bifurcation. So far,
there have been no theoretical grounds for determining this ratio,
but biological data indicate that the length of a vessel segment is
very weakly related to its diameter in the sense that vessel segments
of smaller diameter tend to have smaller lengths, though excep-
tions occur in sufficiently large number to blur any consistent rela-
tion. At best, the data suggest a maximum length to diameter ratio
of �35 and an approximate average of 10 (Zamir, 1999). Using
this average value for the present purpose, values of � for the two
branches in an arterial bifurcation are then equal to the corre-
sponding values of the diameter ratios, namely

(12)

α
d2

d1
----- ,=

d 0
3 d 1

3 d 2
3,+=

λ1
d1

d0
----- 1

1 α3+( )
1 3⁄---------------------------= = , λ2

d2

d0
-----

α
1 α3+( )

1 3⁄--------------------------- .= =

γ 1
l1

l0
---

d1

d0
----- λ1= = = , γ 2

l2

l0
---

d2

d0
----- λ2.= = =

Figure 7. The basic variables at an arterial bifurcation are the
lengths and diameters of the three vessel segments involved, and
the angles that the two branches make with the direction of the
parent vessel. In this paper, the convention is used that subscript 1
always refers to the branch with the larger diameter, and in graphi-
cal constructions that branch is always placed at an angle in an an-
ticlockwise direction from that of the parent vessel. The conven-
tion is purely arbitrary, but it has a bearing on the “slant” of non-
symmetrical trees constructed in this way.
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272 L-System Arterial Branching

Finally, to complete the structure of an arterial bifurcation, it is
necessary to define the angles, �1 and �2, that the two branches
make with the direction of the parent vessel (Fig. 7). There are op-
timum values of these angles that minimize the total volume of the
three vessel segments, given by Murray (1926b) and Zamir (1978):

(13)

Combined with the cube law, the same angles also minimize the
pumping power required to drive the flow through the bifurca-
tion. It can be observed from these expressions that, in a non-
symmetrical bifurcation (� � 1.0), the branch with the larger di-
ameter makes a smaller branching angle than does the other
branch, i.e., �1 � �2.

Parametric L-System Branching

The variables of arterial branching , �, �1, and �2, can be incor-
porated into the L-system formalism by using a so- called “para-
metric L-system” (Prusinkiewicz and Lindenmayer, 1990) that
would embody these variables. The first two variables are intro-
duced by using a two-parameter step function F(L,W) in which L
represents a step length and W represents a step width. Then, in
an arterial tree, L is taken to represent the length of a vessel seg-
ment, and W is taken to represent the diameter of that segment.

θ1cos 1 α3+( )
4 3⁄

1 α4–+

2 1 α3+( )
2 3⁄------------------------------------------------ ,=

θ2cos 1 α3+( )
4 3⁄

α4 1–+

2α2 1 α3+( )
2 3⁄------------------------------------------------ .=

The branching angles are introduced by using one-parameter ro-
tation functions 
(�1) and 	(�2) in which the angles of clock-
wise and anticlockwise rotations are stated explicitly and individ-
ually through the values of �1 and �2 .

The basic parametric L-system for a dichotomous tree then
takes the form:

(14)

where the tree production now requires that values of the param-
eters L, W, �1, and �2 be specified. In fact, the basic L-systems con-
sidered in previous sections also require these values, but when
the parameters are not included explicitly in the algorithm, as
in previous sections, it is assumed that their values are fixed
throughout the tree structure. Indeed, in the trees shown in Figs.
3–6, the values L � 1, W � 1, and �1 � �2 � 40� were implicitly
used, though not stated. Also, it is convenient, particularly for
computer-generated images, to allow the scales of L and W to be
different from each other. In this way, L � 1, W � 1 above can be
taken to mean that L is one unit of length (in centimeters, for ex-
ample) while W is one unit of width (e.g., in millimeters); thus,
the unit of length being different from the unit of width.

One of the most powerful features of parametric L-systems is
that the values of these parameters can be changed along a tree
structure, and the pattern of that change can be incorporated
into the production algorithm. This makes it possible to make
branches smaller than parents, both in length and diameter, and

ω : X L W( , )

p : X L W( , ) F L W( , ) δ1( )– X L W( , )[ ] δ2( )X L W( , )+[ ],→

Figure 8. The ninth stage of tree structures
generated by system 15, with the parameters
being determined by the value of the bifurca-
tion index �, which is a measure of asymmetry
of the bifurcations that make up the tree. (a)
� � 1.0, which corresponds to perfectly sym-
metrical bifurcations; (b) � � 0.8; (c) � � 0.6;
(d) � � 0.4; and (e) � � 0.2. Although � is
constant in each tree, the lengths and diame-
ters of branches diminish as the tree pro-
gresses.
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to give branches individual branching angles. These changes can
be made consistent with the characteristics of arterial branching
discussed in the previous section by taking,

(15)

It should be noted that although X is only an auxiliary symbol
that has no graphical interpretation, it must nevertheless carry
the parameters prescribed by the production rule because these
become the parameters of the branches in the next production
cycle. Values of L0,W0 in the axiom represent the length and
width of the first line segment that must be specified. The
lengths and widths of subsequent line segments are then ad-
justed by the scaling parameters �1, �2, 1, and 2, and their
branching angles are determined by �1 and �2. The scaling oc-
curs at each production cycle, and is therefore compounded as
production progresses. This can be observed by writing down the
first three stages of the tree, namely

(16)

It is to be recalled that, by convention, the parameters �1, 1,
and �1 at each bifurcation are associated with the branch that has
the larger diameter, whereas �2, 2, and �2 are associated with the
branch that has the smaller diameter. Furthermore, in the above
systems (15 and 16), the angle �1 has been associated with an an-
ticlockwise turn (minus sign), whereas the angle �2 has been as-
sociated with a clockwise turn (plus sign). As a result of these
conventions, the branch with the larger diameter at a bifurcation
will always appear on the same side of the parent vessel, namely
at an anticlockwise angle. These conventions are purely arbitrary,
and can be reversed or changed in a number of ways. The con-
ventions do affect the orientation and appearance of a tree struc-
ture, however, and must therefore be recalled when interpreting
the resulting tree structure.

Finally, since the scaling parameters �1, 1, �2, and 2 and
branching angles �1 and �2 are all functions of the bifurcation in-
dex � (Eqs. 11–13), the above system 15 will generate a different
arterial tree for each value of �. For � � 1.0, all bifurcations are
symmetrical and so is the resulting tree structure (Fig. 8 a), al-
though the lengths and diameters of vessel segments are dimin-
ishing in accordance with the rules of arterial branching. The ef-
fect of small asymmetry is shown in Fig. 8 b, where � � 0.8, and
the results for � � 0.6, 0.4, and 0.2 are shown in Fig. 8, c–e.

D I S C U S S I O N  A N D  C O N C L U S I O N S

Results in Fig. 8 (a–e) demonstrate clearly that para-
metric L-systems can generate a wide spectrum of tree
structures that have the theoretical properties of arte-
rial branching and that, by construction, have a fractal
pattern.

ω : X L0 W0( , )

p : X L W( , ) F L W( , ) θ1( )– X γ 1L λ1W( , )[ ] θ2( )+ X γ 2L λ2W( , )[ ].→

n 1:= X L0 W0( , )

n 2= : F L0 W0( , ) θ1( )– X γ 1L0 λ1W0( , )[ ] θ2( )X+ γ 2L0 λ2W0( , )[ ]

n 3:= F L0 W0( , )

θ1( )– F γ 1L0 λ1W0( , ) θ1( )– X γ 1
2L0 λ1

2W0( , )[ ] θ2( )X+ γ 2
2L0 λ2

2W0( , )[ ] ][

θ2( )+ F γ 2L0 λ2W0( , ) θ1( )– X γ 1
2L0 λ1

2W0( , )[ ] θ2( )X+ γ 2
2L0 λ2

2W0( , )[ ].[ ]

At one end of this spectrum is a tree with symmetrical
bifurcations (� � 1.0) in which the diameters of ves-
sel segments diminish rapidly as the tree structure
progresses (Fig. 8 a). At symmetrical bifurcations, the
diameter reduction ratios 1 and 2 are equal and have
their maximum value of 0.794 (Eq. 11), i.e., vessel di-
ameters are reduced by �20% at each bifurcation. In
this case, the tree progresses most “rapidly” toward its
ultimate level at which the branches implement the de-
livery of blood to the capillary bed. Vessels with this
branching pattern have been termed “delivering ves-
sels” (Zamir, 1988; Pollanen, 1992). In the coronary cir-
culation, they are the vessels that enter the depth of the
myocardium and branch profusely to reach the capil-
lary bed (Fig. 9, top).

At the other end of the spectrum, is a tree with highly
nonsymmetrical bifurcations (� � 0) in which the diam-
eter of the leading branch at each bifurcation is only
slightly reduced. In Fig. 8 e, where � � 0.2, and hence
from Eq. 11 1 � 0.997, the reduction is only 0.3%. In
this case, the leading artery retains its identity and much
of the flow rate that it carries as the tree progresses. Ves-

Figure 9. (top) Coronary arteries of the “delivering” type that
typically enter the myocardium and branch profusely to reach the
capillary bed (Zamir, 1988). In this type of branching, the vessels
rapidly lose their identity as their diameters diminish rapidly. (bot-
tom) A coronary artery of the “distributing” type that typically cir-
cles the heart as it gives rise to branches. In contrast with the pat-
tern observed above, here the vessel retains its diameter and iden-
tity through a considerable number of branching sites.
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274 L-System Arterial Branching

sels with this pattern of branching have been termed
“distributing vessels” (Zamir, 1988; Pollanen, 1992). In
the coronary circulation, they have been identified as
the main coronary arteries that circle the heart as they
give rise to secondary branches (Fig. 9, bottom).

Thus, certain arterial branching patterns can be mim-
icked by fractal L-system trees, using an appropriate
choice of branching parameters. However, the L-system
trees have one important characteristic that is rarely
shared by arterial trees in the cardiovascular system. In
each panel of Fig. 8, the value of � is fixed throughout
that particular tree structure (although values of the L-sys-
tem parameters do change from one level of the tree
to the next). This type of uniformity is rarely observed
in the physiological system. The vasculature of the kid-
ney shown in Fig. 2, for example, is like the fractal tree
shown in Fig. 8 a in general appearance, but the first
clearly lacks the uniformity inherent in the second. The
primary source of this nonuniformity in arterial trees is
the value of the bifurcation index �. Data from the vas-
cular system have shown consistently that � takes on al-
most the full range of values (0–1.0) at each level of a
tree and from one level to the next (Zamir, 1999). How-
ever, distinct patterns of branching such as those in Fig.
9 have been shown to have a preponderance for higher
or lower values of � as shown in Fig. 10.

Variability in the value of the asymmetry ratio, �, can
be incorporated into the L-system by assigning a ran-
dom value to � between 0 and 1.0 at each branch point.
Two examples of the resulting trees are shown in Fig.
11, which raise two important questions. First, is the
wide variability in the value of � observed in physiologi-
cal data actually random, or is it determined by local
conditions and other constraints that, therefore, can-
not be modeled by purely random variation? Second, is
it legitimate to refer to the trees in Fig. 11 and to arte-
rial trees that they mimic as fractal structures? Al-
though the trees in Fig. 11 are generated by an L-sys-
tem in which the production rule has the same form at
all levels of the tree, the values of the parameters in-
volved are not predetermined. The second stage of one
of the trees in Fig. 11, for example, cannot be used to
generate the third and subsequent stages of that tree as
was done in Figs. 5 and 6. Indeed, the second stage it-
self cannot be regenerated because it would be ran-
domly different at each production.

Figure 10. Quantitative comparison of the delivering (�) and
distributing (
) patterns of branching in Fig. 9. The data points
show measured diameters at different levels of the branching tree
structure of vessels of the two types (Zamir, 1988). The solid curves
represent the diameter progression along three of the L-system
trees in Fig. 8 ([Fig. 8 a] � � 1.0; [Fig. 8 c] � � 0.6; and [Fig. 8 e]
� � 0.2). It is observed that although the diameter progression
along the physiological trees is not characterized by a single curve
that corresponds to a single value of the asymmetry ratio �, there is
a clear preponderance for higher values of � in one case and lower
values in the other, thus identifying somewhat with the corre-
sponding L-system trees.

Figure 11. The ninth stage of two tree structures generated by
system 15, but here the values of � on which parameters depend
are assigned randomly at each bifurcation in the range 0–1.0.
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The question of whether arterial trees have fractal
structures has important bearing on the more general
question of scaling in biology (Sernetz et al., 1985; West
et al., 1997). It would seem, in conclusion, that para-
metric L-systems can be used to produce fractal tree
structures that have some but not all the branching
characteristics of arterial trees. The key issue is the
value of the asymmetry ratio �. Although a constant
value of � near 0 or 1.0 produce branching patterns
that have been observed in the physiological system, a
random choice of � does not produce the pattern of
variability found in the physiological system.

In the analogous problem of botanical tree struc-
tures, probabilities have sometimes been used to deter-
mine the value or nature of a branching variable in the
production process (Nishida, 1980; MacDonald, 1983;
Prusinkiewicz and Hanan, 1989; Prusinkiewicz and Lin-
denmayer, 1990). In the present case, this would be
equivalent to giving each value of � a certain probabil-
ity of occurring at each branch point. Data from the
cardiovascular system have so far not shown any basis
for assigning such probabilities. The choice of random
values of � at each branch point is at least consistent
with the range of variability shown by the data from the
cardiovascular system, even if in the physiological set-
ting the source of that variability is not known. Here,
the values of � may be influenced by local anatomy,
local flow requirements, and other constraints, and
therefore the variability may not be purely random. On
the other hand, in the botanical situation, there are in-
dications that probabilities may well play a role in the
growth of tree structures (Nishida, 1980; MacDonald,
1983; Prusinkiewicz and Hanan, 1989; Prusinkiewicz
and Lindenmayer, 1990). An important difference be-
tween botanical and arterial tree structures may indeed
lie in the legitimacy of using probabilities in branching
algorithms in the two cases.
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