Fractal Trigeometry

Son – Eindhoven, March 14th 2012, by Jules Ruis

Formula Mandelbulb/Juliusbulb/Juliabulb according to Jules Ruis

First created as BBM-15 d.d. 29 December 1997, see: www.fractal.org/BBM15.pdf

We want to calculate 3D fractals called the Mandelbulb, Juliusbulb and Juliabulb. Similar to the original 2D Mandelbrot the 3D formula is defined by $z \rightarrow z^n + c$ but where 'z' and 'c' are hypercomplex ('triplex') numbers representing Cartesian x, y, and z coordinates.

The exponentiation term can be defined by:

{x,y,z} ^n = (r^n) { $cos(n^*\phi) * cos(n^*\theta), sin(n^*\phi) * cos(n^*\theta), sin(n^*\theta) }$

where $r = sqrt (x^2 + y^2 + z^2)$ and $r1 = sqrt (x^2 + y^2)$

As we define θ as the angle in z-r1-space and φ as the angle in x-y-space

then θ = atan2 (z / r1) so θ = atan2 (z / sqrt (x^2 + y^2)) and ϕ = atan2 (y/x)

The addition term in z -> $z^n + c$ is similar to standard complex addition, and is simply defined by:

 $(x,y,z) + \{a,b,c\} = \{x+a, y+b, z+c\}$

The rest of the algorithm is similar to the 2D Mandelbrot!

Summary Formula 3D Mandelbulb, Juliusbulb and Juliabulb

$$r = sqrt (x^2 + y^2 + z^2)$$

 θ = atan2 (z / sqrt(x^2 + y^2)

 $\phi = atan2 (y/x)$

newx = $(r^n) * \cos(n^* \phi) * \cos(n^* \theta)$

newy = $(r^n) * sin(n^*\phi) * cos(n^*\theta)$

newz = $(r^n) * sin(n^*\theta)$

where n is the order of the 3D Mandelbulb, Juliusbulb/Juliabulb.

Examples of 3D Mandelbulb/Juliusbulb/Juliabulb

3D Mandelbulb z^2	3D Juliusbulb z^2	3D Juliabulb z^2