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Complex emergent systems of many interacting components, in-
cluding complex biological systems, have the potential to perform
quantifiable functions. Accordingly, we define “functional infor-
mation,” I(Ex), as a measure of system complexity. For a given
system and function, x (e.g., a folded RNA sequence that binds to
GTP), and degree of function, Ex (e.g., the RNA-GTP binding
energy), I(Ex) = —logz[F(Ex)], where F(Ex) is the fraction of all
possible configurations of the system that possess a degree of
function = Ex. Functional information, which we illustrate with
letter sequences, artificial life, and biopolymers, thus represents
the probability that an arbitrary configuration of a system will
achieve a specific function to a specified degree. In each case we
observe evidence for several distinct solutions with different
maximum degrees of function, features that lead to steps in plots
of information versus degree of function.
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Complex emergent systems, in which interactions among numer-
ous components or “agents’” produce patterns or behaviors not
obtainable by individual components, are ubiquitous at every scale
of the physical universe, for example in neural networks (1),
turbulent fluids (2), insect colonies (3), and spiral galaxies (4).
Complex systems also appear in a range of artificial symbolic
contexts, including genetic algorithms (5), cellular automata (6),
artificial life (7), and models of market economies (8).

Life, with its novel collective behaviors at the scale of mole-
cules, genes, cells, and organisms, is the quintessential emergent
complex system. Furthermore, the ancient transition from a
geochemical world to a living planet may be modeled as a
sequence of emergent events, each of which increased the
chemical complexity of the prebiotic world (9-11).

Given this ubiquity and diversity, it is desirable to understand
the characteristics of emergent complex systems, as well as the
factors that might promote complexity in evolving systems.
However, complexity has proven difficult to define or measure
with precision (12-14). A central objective of this study, there-
fore, is to examine “functional information” (15) as a quantita-
tive measure of complexity that may be applicable to the analysis
and prediction of attributes of a wide range of phenomena in
physical and symbolic systems, including evolving biological
systems.

An extensive literature explores historical developments and
recent advances in the study of complexity and information (14,
16-18) as well as their application to understanding biological
systems (3, 13, 19-24). Despite this rich literature, previous
discussions of complexity have not generally focused on the
relationship between information content and function (25). We
propose to measure the complexity of a system in terms of
functional information, the information required to encode a
specific function.

Systems and Their Functions

In this paper we consider the functional information of both
symbolic systems (letter sequences and Avida artificial life
genomes) and biopolymers (RNA aptamers). These systems
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share several characteristics: first, they consist of numerous
individual components or “agents”; second, the agents can
combine in a combinatorially large number of different config-
urations; and third, some configurations display functions that
are not characteristic of the individual agents. Analyses of these
systems address fundamental questions about the relationship
between information content and function. For example, How
much information does it take to encode a function? Are there
multiple distinct solutions? How are solutions distributed in
configuration space? How much more information does it take
to encode a given improvement in function? What environmen-
tal factors might influence these relationships?

The function of some emergent systems is obvious: a sequence
of letters communicates a specific idea, a computer algorithm
performs a specific computation, and an enzyme catalyzes at
least one specific reaction. Less obvious are the functions of
systems of many interacting inanimate particles, such as mole-
cules, sand grains, or stars, but these systems may also be
described quantitatively in terms of function, for example, in
terms of their ability to dissipate energy or to maximize entropy
production through patterning (e.g., refs. 26-29). Living systems,
by contrast, typically display multiple essential functions (21, 30,
31). This consideration of complexity in terms of the function of
a system, as opposed to some intrinsic measure of its patterning
or structural intricacy, distinguishes our treatment from many
previous efforts.

Quantifying Complexity. Development of a quantitative measure
of complexity has proven difficult for at least three reasons, each
of which relates to the diversity of systems that may be labeled
“complex.”

1. Systems may be complex in terms of information content,
physical structure, and/or behavior. Consider three stages in
the life cycle of a multicellular organism: a fertilized egg, a live
adult, and a postmortem adult. All three states are complex,
but they are complex in different respects. All three states
possess the sequence information (a genome) necessary to
grow a living organism. Living and dead adult organisms also
display complex anatomical structures, but only living organ-
isms possess behavioral complexity. Any universal definition
of complexity must thus have the potential to quantify
complexity independently in terms of information, structure,
or behavior.
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2. It has been difficult to define complexity in terms of a metric
that applies to all complex systems. No obvious common
thread exists in comparing the complexity of symbolic sys-
tems, such as language, with those of physical agents, such as
cells. Parameters useful in characterizing symbolic systems
(e.g., algorithm- or information-based complexity metrics)
generally differ from those used to analyze systems of inter-
acting particles (e.g., Newtonian dynamics or maximum en-
tropy models). Gell-Mann (12) concludes, “A variety of
different measures would be required to capture all our
intuitive ideas about what is meant by complexity.”

3. Complex emergent systems are diverse in terms of their dimen-
sionality. Sequences of letters, computer code, or bipolymers can
be treated as one-dimensional strings of symbolic information
(or as points in a high-dimensional sequence space). On the
other hand, many physical emergent systems, including those
composed of many interacting sand grains, cells, organisms, or
stars, exhibit time-dependent behaviors in two or three spatial
dimensions. It is desirable for a complexity formalism to apply
to this range of dimensionalities.

Despite this diversity, a common thread is present: All com-
plex systems alter their environments in one or more ways, which
we refer to as functions (32). In the words of von Baeyer (18),
“Information gathering by itself, without observable effects on
the gatherer’s behavior, is a pointless pursuit.” Function is thus
the essence of complex systems. Accordingly, we focus on
function in our operational definition of complexity. Therefore,
although many previous investigators have explored aspects of
biological systems in terms of information (e.g., ref. 33), we
adopt a different approach and explore information in terms of
the function of a system (including biological systems).

Szostak and coworkers (15, 34) introduced “functional infor-
mation” as a measure of complexity. They proposed that the
complexity of an information-rich system, such as RNA aptam-
ers (RNA structures that bind a target molecule), can be
quantified in the context of specific functions of the system, in
contrast to prior formalisms based on genomic, sequence, or
algorithmic information (e.g., refs. 13 and 35). Here we examine
applications of this formalism to letter sequences, the artificial
life platform Avida (36), and RNA apatmers.

Functional Information as a Measure of System Complexity. Many
emergent systems of interacting agents can be described in terms
of their potential to accomplish one or more quantifiable tasks.
Consider a system that can exist in a combinatorially large
number of different configurations (i.e., a 100-nt RNA strand
comprised of four different nucleotides, A, U, G, and C, with 4190
different possible sequences). Assume that a small fraction of
these configurations accomplishes a specified functionx to a high
degree (corresponding to a high information content). Typically,
a significantly greater number of configurations will prove
somewhat less efficient in accomplishing function x (correspond-
ing to lower information content), whereas the majority of
configurations will display little or no function (34, 35).
Accordingly, “degree of function x” (E,) is a measure of a
configuration’s ability to perform the function x. For example, in
an enzymatic system E, might be defined as the increase in a
specific reaction rate that is achieved by the enzyme. In the case
of a sequence of letters, E, might represent the probability that
the sequence conveys a desired message to a particular recipient.
And in a system with water flowing over sand ripples, £, might
be defined as the rate of energy dissipation by turbulence,
compared with flow over a smooth, unpatterned surface. The
units or scale of E, may be somewhat arbitrary and will depend
on the nature of function x. Thus, for example, catalytic effi-
ciency might be recorded in terms of rate enhancement or in
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terms of decreased activation energy (proportional to the log of
the rate enhancement).

In the formalism of Szostak (ref. 15; see also ref. 19, p. 252),
functional information [/(E))] is calculated with reference to a
specific degree of function x, designated E,. Typically, a small
fraction, F(E,), of all possible configurations of a system achieves
at least the specified degree of function, =E,. Accordingly, we
define functional information in terms of F(Ey):

I(Ex) = _logZ[F(Ex)]

Thus, in a system with N possible configurations (e.g., a sequence
of n RNA nucleotides, which has N = 4" discrete possible
sequences):

I(E,) = ~logy[M(E,)/N],

where M(E,) is the number of different configurations that
achieves or exceeds the specified degree of function x, =F,.

In every system, the fraction of configurations, F(E,), capable
of achieving a specified degree of function will generally de-
crease with increasing E, (15). The largest possible functional
information of a system is exhibited in the case of a single
configuration that displays the highest possible degree of func-
tion, Ejax:

I(E ) = —logo[1/N] = logN,

where [ is measured in bits. This maximum functional informa-
tion is thus equivalent to the maximum number of bits necessary
and sufficient to specify any particular configuration of the
system.

Alternatively, the minimum functional information of a sys-
tem is zero for configurations with the lowest degree of function,
Ein, because all possible states have E, = Epy:

I(E nin) = —logy(N/N) = —logy(1) = 0 bits.

In this formulation, functional information increases with degree
of function, from zero for no function (or minimum function) to
a maximum value corresponding to the number of bits necessary
and sufficient to specify completely any configuration of that
system.

Functional information is defined only in the context of a
specific function x. For example, the functional information of a
ribozyme may be greater than zero with respect to its ability to
catalyze one specific reaction but will be zero with respect to
many other reactions. Functional information therefore depends
on both the system and on the specific function under consid-
eration. Furthermore, if no configuration of a system is able to
accomplish a specific function x [i.e., M(E,) = 0], then the
functional information corresponding to that function is unde-
fined, no matter how structurally intricate or information-rich
the arrangement of its agents.

It is important to emphasize that functional information, unlike
previous complexity measures, is based on a statistical property of
an entire system of numerous agent configurations (e.g., sequences
of letters, RNA oligonucleotides, or a collection of sand grains) with
respect to a specific function. To quantify the functional informa-
tion of any given configuration, we need to know both the degree
of function of that specific configuration and the distribution of
function for all possible configurations in the system. This distri-
bution must be derived from the statistical properties of the system
as a whole [as opposed, for example, to the statistical properties of
populations evolving in a fitness landscape (37)]. Any analysis of the
functional information of a specific functional sequence or object,
therefore, requires a deep understanding of the system’s agents and
their various interactions.
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Three examples (letter sequences, the artificial life platform
Avida, and RNA aptamers) serve to illustrate the concept of
functional information.

The Functional Information of Letter Sequences. Systems of many
interacting components can occur in a combinatorially large
number of different configurations. Functional information de-
pends on the fraction of all possible configurations that achieve
at least a specified degree of function. Sequences of letters
provide a conceptually familiar example.

Consider various sequences of n letters that convey the
message: “A fire has just started in a house at the corner of Main
Street and Maple Street.” Many different sequences of letters
are capable of conveying that information. To determine the
functional information of any particular sequence we must
specify three parameters:

1. n, the number of letters in the sequence.

2. E,, the degree of function x of that sequence. In the case of
the fire example cited above, E, might represent the proba-
bility that a local fire department will understand and respond
to the message (a value that might, in principle, be measured
through statistical studies of the responses of many fire
departments). Therefore, E, is a measure (in this case from
0 to 1) of the effectiveness of the message in invoking a
response.

3. M(Ey), the total number of different letter sequences that will
achieve the desired function, in this case, the threshold degree
of response, =E,.

The functional information, I(E,), for a system that achieves
a degree of function, =E,, for sequences of exactly n letters is
therefore

I(E,) = ~logy[M(E,)/26"].

Note that 26" is the total number of possible arrangements of
26 letters in a sequence of n letters, and in this treatment we
assign equal probability to all possible sequences. The important
more general case of configurations of unequal probabilities is a
straightforward extension of the treatment of Shannon (38, 39),
as discussed by Carothers et al. (34). Greater clarity of expression
can be added through additional characters such as “space,”
“capital,” and “period”; however, in this example we use only 26
letters. As in all combinatorially large emergent systems, most
sequences convey no information (i.e., have no discernable
function). Functional information is determined by identifying
the fraction of all sequences that achieve a specified outcome.

Consider, for example, sequences of 10 letters that have a high
probability (E, = 1) of evoking a positive response from the fire
department. Such sequences might include “FIREONMAIN,”
“MAINSTFIRE,” or “MAPLENMAIN.” Additionally, some
messages containing phonetic misspellings (FYRE or MANE),
mistakes in grammar or usage (FIREOFMAIN), or typing
errors (MAZLE or NAPLE) may also yield a significant but
lower probability of response (0 << Ey < 1). Given these variants,
on the order of 1,000 combinations of 10 letters might initiate a
rapid response to the approximate location of the fire. Thus,

I(1) =~ —1og,[1000/26'°] =~ 36 bits.

Numerous additional 10-letter sequences convey some relevant
information but would result in a lower probability of response
(0 < E, < 1): “FIREHELPME,” “DANGERFIRE,” or
“BURNINGNOW.” A lower degree of function, E,, will gen-
erally correspond to a larger number of effective letter se-
quences, M(E,).
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The formulation of functional information also applies to
systems in which sequences of varied lengths are combined. For
letter sequences of any length from 1 to n letters,

I(E,) = _10g2{ M(E,) / [ Emé")] }

Varying the maximum length, n, of the letter sequence has a
significant effect on the maximum possible degree of function,
E,, as well as the number of states, M(E,), that achieve that
degree of function. Sequences of 1, 2, or 3 letters are unlikely to
convey sufficient information to achieve any response. With 4
letters, however, a few suggestive configurations exist (FIRE,
MAIN, or MAPL), although all such sequences possess a high
degree of ambiguity (i.e., Ey << 1).

On the other hand, with longer letter sequences (n >> 10), the
number of messages of a given degree of function increases
dramatically, with new opportunities for explicit instructions
(and hence maximum degree of function, E, = 1). With a
sufficient number of letters, any arbitrary degree of accuracy and
precision in a message can be communicated. Note, however,
that arbitrarily long sequences are not necessarily more effective
at conveying information and thus may not increase the func-
tional information of a system. For example, consider sequences
of letters that begin with the following 22 letters:

FIREATMAINSTANDMAPLEST . ..

Such a sequence should invariably summon the fire department,
no matter what or how many additional letters are placed at the
end of the sequence. Thus, for this admittedly contrived fire
department scenario, the fraction of sequences that achieve the
desired outcome attains a maximum value at ~20 letters. In
competitive systems, notably genetic information constrained by
length-selective pressure in living systems (e.g., refs. 40-43),
longer sequences may prove inefficient and do not necessarily
confer an advantage. (Indeed, in the case of reporting a fire, an
overly long and detailed message might delay response time.)

Note that in this formulation of functional information the
maximum possible value, I(Emax), arises when a message is so
specific that only a single letter sequence out of all possible letter
sequences achieves a desired outcome. In the case of a sequence
of n letters, that maximum functional information occurs when
M(E,) = 1

I(E ) = —logy[1/26"] = logy26" = 4.7n bits.

Although this conceptual example is qualitative, it introduces
key concepts that are required to quantify functional informa-
tion in any emergent system with numerous configurations. Of
special interest is the relationship between information and
degree of function. Letter sequences point to the existence of
discrete “classes” of functional configurations, based in this case
on the appearance of familiar words (“FIRE” and “MAIN”) as
well as their mutations (“FYRE” and “MANE”). We explore
the role of such multiple classes of solutions in the subsequent
sections on Avida and RNA aptamers.

We conclude that rigorous analysis of the functional informa-
tion of a system with respect to a specified function x requires
knowledge of two attributes: (i) all possible configurations of the
system (e.g., all possible sequences of a given length in the case
of letters or RNA nucleotides) and (ii) the degree of function x
for every configuration.

These two requirements are difficult to meet in many systems.
In the case of letter sequences, for example, the sequence is
obvious, but it is difficult to determine quantitatively the degree
of function of many sequences. By contrast, it is relatively
straightforward to determine the degree of function (for exam-
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ple, the ligand affinity) of any given RNA sequence, but impos-
sible with present technology to measure all sequences in a large
population, e.g., ~10'* randomly generated 100-mers as used in
some aptamer evolution studies (although single-molecule meth-
ods may ultimately provide a technical solution to this chal-
lenge). However, these concepts may be placed on a firmer
footing in the case of computational systems, such as the artificial
life platform Avida.

The Functional Information of Avida Populations. We have adapted
the artificial life platform Avida (35-36) to explore the distri-
bution of function in an emergent system. The digital organisms
that populate the virtual world of Avida are “computer programs
that self-replicate, mutate, and adapt by natural selection” (44)
and as such share many (although not all) of the attributes
ascribed to biological life. Accordingly, artificial life models have
been used as a means of exploring ideas about organic biology
that are not readily amenable to experimentation. Here we
explore the functional information of randomly generated pop-
ulations of Avida organisms. Understanding the origin and
evolution of complex biological systems motivates this work;
however, the first task is to demonstrate an approach for
quantifying the relationship between information and functional
behavior in a well characterized emergent system, whether or not
unambiguous biological insight is immediately revealed.

Avida organisms consist of multiple lines of machine instruc-
tions, termed its “genome.” Each organism operates as a formal
computer similar to that outlined by Turing (45), and the
computational properties of each organism are determined by
the sequence of machine instructions stored in its memory. A
population of Avida organisms can be thought of as a multitude
of identical computers running many different simple programs,
where differences between any two members of the population
arise solely from the differences in the programs being run.

This research focuses on the ability of a small fraction of all
randomly generated Avida organisms to perform computational
tasks that arise through the coordinated execution of multiple
machine instructions (35). None of these computational tasks
can be performed by the execution of a single instruction;
indeed, the shortest functional program requires five instruc-
tions. The computational ability (function) of Avida organisms
thus emerges from the interaction of instructions (the agents),
making Avida an ideal model for characterizing complex emer-
gent systems.

In a typical Avida experiment, we generate 107 random
instruction sequences (i.e., 107 different individual genomes),
each sequence 100-500 instructions in length, from the default
set of 26 different machine instructions. Although most se-
quences display no function, a small subset of sequences code for
the ability to compute logic operations (such as “not” or “and”)
or arithmetic functions (addition and subtraction).

The set of computational tasks Avida organisms can perform
allows for varied solutions, analogous to variations seen in
nature. This characteristic is underscored by the fact that in its
evolution apparatus Avida does not consider how a task is
accomplished but only the resulting function, i.e., whether or not
it is executed. The Avida platform does not specify preferred
approaches to problem solving, which allows novel solutions to
appear through evolution. There may be great variety among
these solutions, and they may be very different from those that
might have been arrived at by design (44).

Measures of Avida Function. Just as there is no unique measure of
function in natural systems, there is no unique measure of the
degree of function in an Avida sequence population. We chose
to consider three distinct measures of function: (7) the number
of times a sequence is able to compute a specific task, for
example, addition or not/and; (if) the total number of all tasks
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Fig. 1. Distribution of the not/and (NAND) function in 300-line Avida
genomes in a randomly generated sample of 107 genomes. The degree of
function, E, is the number of times NAND is executed by the genome, whereas
functional information, / (in bits), is —log, of the fraction of all sequences that
achieves at least that degree of function, F(E). Note the discontinuities, which
are a recurrent feature in these experiments.

the sequence is able to compute, because many sequences can
perform multiple distinct operations; and (iii) the total number
of different tasks the sequence is capable of computing.

Each of these measures of function correlates to strategies that
biological organisms employ to increase their fitness. Some
organisms rely on the ability to perform one action very well,
others rely on the ability to perform multiple actions moderately
well, and still others take advantage of flexibility, the ability to
do many different tasks (46). However, unlike with living
organisms, quantifying the extent of these traits in Avida is
straightforward and unambiguous. Most of the discussion that
follows, however, focuses on execution of a single task.

Functional sequences constitute a tiny minority of the Avida
genome space. Therefore, to explore fully the distribution of
function within a sequence space, a large number of randomly
generated sequences (i.e., equal probability) must be surveyed
(see Methods). Such random explorations of genome space are
similar to the strategies used in the directed evolution of RNA
structures (e.g., refs. 47-48). Note, however, that this type of
random sampling is not possible with living organisms because
the portion of genome space explored in an evolution experi-
ment will be constrained by the topology of the underlying fitness
landscape and the particular configuration of the environment
maxima (25, 49-51).

Avida Results. Random sampling of genome space has yielded
several interesting results related to the frequency and distribu-
tion of functional configurations. By using Avida’s default set of
26 machine instructions, a randomly generated sequence with
length of a magnitude of ~10? lines was found to be functional
(i.e., was able to perform at least one logic or arithmetic
operation at least once) with probability P ~ 1073. The func-
tional fraction of a population decreases with decreasing se-
quence length until it reaches zero for populations with se-
quences of a length of four machine instructions or less.

We observe regular, reproducible structure in the distribution
of task execution frequency, for example, in the number of
not/and or addition operations executed (Ey) versus functional
information (Fig. 1). This plot, which illustrates the distribution
of function for 107 randomly generated 300-instruction genomes,
is continuous over most values of E,, for example, between 2 and
48. However, at several values of E,, discontinuities appear. At
E, > 73 these discontinuities point to isolated individual ge-
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Fig. 2. The frequency of the ADD function in 100-, 200-, 300-, and 500-line
linear Avida genomesinrandomly generated samples of 106 genomes. Degree
of function, E, is the number of times the ADD function is executed by the
genome, whereas functional information, / (in bits), is —log, of the fraction of
all sequences that achieves at least that degree of function, F(E). Note that
maximum E increases with genome length.

nomes of high functionality; such outliers always appear, but they
may occur at different values of E, for repetitions of this
experiment. However, other discontinuities (notably those be-
tween 48/49 and 58/59) are robust, always appearing in experi-
ments on 300-instruction genomes. Thus these gap-like features
reflect an intrinsic behavior of Avida genomes.

We also find that the number and specific location of these
gaps, as well as the maximum values of I(Ey) and E,, depend on
the length of the sequences being studied (Fig. 2). For example,
we examined the number of executions of the addition function
for 10° randomly generated genomes of 100, 200, 300, and 500
instructions. We find that the maximum number of addition
executions, E,, increases with genome length. We often observe
discrete highly functional genomes, representing outlier solu-
tions, as well as reproducible gaps. For randomly generated
genomes of 100, 200, 300, and 500 instructions, the first signif-
icant gap in addition execution frequency occurs at 19, 39, 59,
and 69 executions, respectively.

Islands of Function. What is the source of the reproducible
discontinuities in Figs. 1 and 2? We suggest that the population
of random Avida sequences contains multiple distinct classes of
solutions, perhaps with conserved sequences of machine instruc-
tions similar to those of words in letter sequences or active RNA
motifs (52). Each class has a maximum possible degree of
function; therefore, the discontinuities occur at degrees of
function below which a major class of sequences is represented
and above which it is not represented.

Fig. 3 demonstrates one possible model for this stepped
behavior, based on discrete “islands” of solutions. In Fig. 3, the
islands, each of which represents a specific distinct set of
solutions to the function [i.e., fitness (z axis)], are conceptually
represented as being close to each other in sequence space
(projected on the x—y plane). Note, however, that these islands
are a visual simplification. For example, in the case of RNA
sequences, any given “island” of closely related functional
solutions may be more realistically represented by a densely
interconnected network that spans all of sequence space (25, 53,
54). Similar consideration of function topologies has been ap-
plied to neural network connections (55) and viroid solutions to
infecting the same plant host (56). Avida may be similar, because
the commands relevant to a given solution do not necessarily
need to appear sequentially at a specific location in the string but
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Fig. 3. Schematic representation of four discrete functional classes, or
“islands,” of solutions that display function. The vertical axis is degree of
function, E, whereas the horizontal plane represents a two-dimensional pro-
jection in sequence space. The number of sequences with degree of function
=F corresponds to the area intersected by the horizontal plane at that height
along the E axis. Increasing E above the heights of the flat-topped islands A
and B will result in discontinuities in the function E versus /, as illustrated in
Figs. 1 and 2. Island C is a cone-shaped distribution, and island D represents a
discrete solution of the type that might not be discovered in random sampling
experiments.

can occur in different registers and can be spread apart by
neutral commands.

Consider a case where four classes of solutions for the same
function, labeled A-D, occur in the population (Fig. 3). Each
class may contain a normal distribution of degrees of function,
but each has a different topology in sequence space and a
different maximum degree of function, E,. For relatively low
values of E,, all four islands contribute functional sequences. As
the value of E, increases to just above the heights of flat-topped
islands A and then B, discontinuities in the plot of E versus I(Ey)
will occur (i.e., in Fig. 1 the height corresponding to island A
would be E, = 48 and the height of island B would be E, = 58).
This model also matches the observation that the continuous
stretches of E, versus I(E,) are longest for populations of long
sequences: Longer sequences allow for a greater number of
distinct solutions whose superposition would serve to drown out
individual discontinuities.

This model for generating discontinuities is plausible because
multiple distinct solutions may exist in sequence space for a given
task. For example, the shortest possible sequence (“gene”) for
accomplishing subtraction is five lines long (35). However, an
alternative unrelated subtraction gene 10 lines long can be
constructed within the Avida language using two’s-complement
arithmetic (57). This second class of solutions reinforces the
concept of “islands” of function in sequence space, where two or
more types of solutions exist that achieve the same task but do
so in an unrelated fashion.

We note, by contrast, that purely random statistical functions
do not display steps. For example, if the degree of function is
defined as the frequency of the appearance of the number “1”
in randomly generated sequences of 100 digits, then functional
information follows a well behaved smooth curve (Fig. 4).
Maximum functional information arises for the solitary state
with 100 consecutive 1s, whereas an obvious uniform distribution
follows for lesser degrees of function. This statistically random
case is not stepped. By comparison, the structures depicted in
Figs. 1 and 2 suggest that the tasks being considered as functions
are neither trivial, nor are they achieved by essentially arbitrary
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Fig.4. I(E) versus E for the statistically random system, where E is the number
of times the digit 1 appears at least that many times in asequence of 100 digits.
This statistically random case is not stepped, in contrast to the topology of
Avida genomes.

or random, albeit rare, configurations of the system. The inter-
actions in the Avida system, and perhaps many other complex
systems, lead to distribution of function that prove far richer than
in systems possessing statistically trivial function. It remains to be
seen, however, whether the observed stepped relationship be-
tween I(E,) and E, is a general feature of functional information
or an idiosyncratic characteristic of Avida genomes.

Functional Information and RNA Polymers. The previous two exam-
ples, sequences of letters and Avida machine commands, illus-
trate the utility of the functional information formalism in
characterizing the properties of symbolic systems that can occur
in combinatorially large numbers of configurations. Functional
information also has applicability to complex biological and
biochemical systems; indeed, it was originally developed (15, 34)
to analyze aptamers (RNA structures that bind target ligands)
and ribozymes (RNA structures that catalyze specific reactions).
Thus, the degree of function, E,, of these linear sequences of
RNA letters (A, C, G, and U) can be defined quantitatively as
the binding energy to a particular molecule or the catalytic
increase in a specific reaction rate. We can easily specify every
possible RNA sequence of length n, and we can (at least in
principle) synthesize RNA strands and measure the degree of
function of any given sequence. The behavior of aptamers and
ribozymes thus lends itself to the type of quantitative analysis
that we applied previously to letter sequences and Avida pop-
ulations (34).

In general, a single RNA nucleotide will display minimal
catalytic or binding function, Xmin. It follows that a minimum
sequence length (nmin nucleotides) will be required to achieve
any significant degree of ribozyme or aptamer function, £, >
Enin. Increasing the number of nucleotides (n > npmi) will
generally lead to many more functional sequences, some of which
will have a greater degree of function. Furthermore, for any
given catalytic or binding function there exists an optimal RNA
sequence of length ngp that attains the maximum possible
degree of function, Ema. That sequence thus possesses the
maximum possible functional information:

Inax(E max) = _logZ{ 1/ |: E l—nopt(4n):| }

For degrees of function less than the maximum (E, < Epax), an
intermediate functional information obtains [I(E,) <
ImaX(Emax)]-
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The in vitro evolution of RNA aptamers (e.g., refs. 47 and 48)
provides a dramatic illustration of the evolution and selection of
systems with high functional complexity. Aptamer evolution ex-
periments begin with large populations (up to 10 randomly
generated RNA sequences), which are subjected to a selective
environment, a test tube coated with a target molecule, for example.
A small fraction of the random RNA population will selectively
bind to the target molecules. Those RNA strands are recovered,
amplified with mutations (through reverse transcription, PCR, and
transcription), and the process is repeated several times. Each cycle
yields a more restricted RNA population with improved binding
specificity (i.e., a higher degree of function, E,).

Carothers et al. (34), who analyzed the distribution of func-
tional RNA aptamers in a random population, provide data on
a specific example. They identify 11 distinct classes of GTP-
binding RNAs, which are distinguished from each other both by
nucleotide sequences (RNA motifs) (52) and secondary stem-—
loop structures. The degree of function of these aptamers can be
defined by a solution dissociation constant, a measure of the
binding strength between GTP and the folded aptamer. Caroth-
ers and coworkers find that a 10-fold increase in GTP binding
strength requires ~10 additional bits of information (ie., a
1,000-fold decrease in abundance in a population of random
sequences). Such a finding is in accord with studies of biopoly-
mers (58, 59) that show functionally similar peptides with
dissimilar primary structures, as well as reports of many distinct
classes of protease enzymes (60, 61).

Furthermore, although the data of Carothers et al. (34) are too
few to draw definitive conclusions, there is a suggestion of a
stepped relationship between binding strength (E,) and func-
tional information (I), a relationship analogous to that displayed
by populations of Avida organisms (e.g., Fig. 1). These steps, if
real, are likely caused by the existence of separate classes of
GTP-binding solutions. Functional classes with greater numbers
of stems represent a significantly smaller fraction of all RNA
sequences, but they have the potential to display greater GTP-
binding affinities.

Functional Information in Higher-Dimensional Systems. Functional
information provides a measure of complexity by quantifying the
probability that an arbitrary configuration of a system of nu-
merous interacting agents (and hence a combinatorially large
number of different configurations) will achieve a specified
degree of function. This concept was originally discussed in the
context of biopolymer sequences that perform specific binding
or catalytic functions (15, 34). In the preceding sections we
demonstrated that the extension of functional information anal-
ysis to one-dimensional systems of letters or Avida computer
code is conceptually straightforward, requiring only specification
of the degree of function of each possible sequence.

We suggest that the functional information formalism may
also be applicable to complex physical structures in higher-
dimensional systems. Of special interest in this regard are
biological systems that display complex emergent behavior, for
example, through long-range chemical signaling among a col-
lection of cells in social amoebas (62-64), cooperation among
consortia of host organisms and symbionts (65), or colonies of
social insects (3, 22, 66). We propose that functional information
can be applied, at least in principle, to any such emergent system
that has the ability to perform a function.

Many emergent systems can be analyzed in terms of their
ability to dissipate energy or maximize entropy production (27,
29, 67, 68). For example, consider the functional information of
an assemblage of sand grains subjected to a steady flow of wind
or water (e.g., refs. 69 and 70). The formation of periodic sand
dunes or ripples serves to initiate turbulent flow and thus
increase energy dissipation. Functional information of the sys-
tem can thus be measured as the fraction of all possible sand
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configurations, F(E,), that achieve at least the corresponding
energy dissipation, E,. Such a problem might be analyzed with
Monte Carlo simulations of numerous gravitationally stable sand
configurations. The analytical challenge remains to determine
the degree of function of a statistically significant random
fraction of all possible configurations of the system so that the
relationship between I(E,) and E, can be deduced.

Conclusions

A complexity metric is of little utility unless its conceptual
framework and predictive power result in a deeper understand-
ing of the behavior of complex systems. Analysis of complex
systems in terms of functional information reveals several char-
acteristics that are important in understanding the behavior of
systems composed of many interacting agents. Letter sequences,
Avida genomes and biopolymers all display degrees of functions
that are not attainable with individual agents (a single letter,
machine instruction, or RNA nucleotide, respectively). In all
three cases, highly functional configurations comprise only a
small fraction of all possible sequences. Furthermore, these
three examples reveal that several discrete classes of functional
configurations exist, a situation that can lead to distinctive step
features in plots of information versus function.

The functional information formalism may also point to key
factors in the origin and emergence of biocomplexity. In par-
ticular, functional information quantifies the probability that, for
a particular system, a configuration with a specified degree of
function will emerge. Furthermore, analysis of the relationship
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between information and function may reveal how much more
information is required to encode a given improvement in
function. The formalism also points to strategies, such as in-
creasing the concentration and/or diversity of molecular agents,
that might maximize the effectiveness of chemical experiments
that attempt to replicate steps in the origin of life.

Methods

Determination of the computational properties of a randomly
generated instruction sequence is accomplished within Avida’s
analyze mode. The trace feature in analyze mode generates
detailed information on the state of the virtual computer at each
step in the processing of a genome, including a notation of when
a recognized function has been executed. An automated script
parsed these logs to collect all of the data necessary to determine
the functional properties of each sequence and cataloged the
genomes found to be functional to permit later study. Detailed
documentation of the Avida software, including descriptions of
the trace function and analyze mode, can be found online at the
Digital Evolution Laboratory at Michigan State University web
site (http://devolab.cse.msu.edu/software/avida/doc).
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