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Abstract

After explaining the details of an efficient technique, developed in early
1980s, to plot digital images of quaternion filled-in Julia sets, later considera-
tions on it will introduce a new modification for displaying such sets with no
interior too. A step by step description via pseudo-C++ is given. The reader is
assumed to be familiar with advanced programming and quaternion calculus.

1 History

In the turn of 1970s and 1980s, consequently to the worldwide revival of inter-
ests in the theory of holomorphic dynamics1, digital imaging started to play a
relevant role in this field thanks to the detailed pictures offered; more widely

1This term gathers the iterations of functions in one and in several complex variables.
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speaking, this same impulse contributed to definitely show how computers can
be regarded as essential to aid experimental mathematics so that, besides the
developments in the related analysis, rendering methods were produced for
highly detailed images of these Julia sets.

Achievements first stepped in C. Not

Filled-in Julia set

Basin to ∞

Figure 1.1: The typical topological config-
uration for a filled-in Julia set.

casually: this was the original numerical
field where local holomorphic dynamics
arose during 1870-80s with Schröder and
Koenigs. During 1910-20s, global results
came from the pioneering works by Fa-
tou and Julia. Along few developments
over later decades, holomorphic dynam-
ics finally reached 1980s when, on a re-
vival wave, new enthusiasms drove efforts

to resume deep and old results: for computer imagery, this trend begun with
plots in C. In 1982 Alan Norton definitely opened to quaternions [14] and im-
plicitly showed that, contrary to the same graphics computed for complexes,
clear views of Julia sets require to be rendered via ray-tracing here: otherwise
they2 would be flat looking and their complicated topological structure would
not be evinced. During 1983-87 John Holbrook’s works [8, 9] followed, where
the inverse iteration, exported from C, was also tried. In 1989-90 Norton came
back [15] to the topic. We also mention the collaborative results [6, 7] by Hart,
Kauffman and Sandin, developing either Holbrook’s and Norton’s results to-
gether with a more refined ray-tracing as well as some additional considerations
on how to improve that inverse method. In 1996, on the front of Algebra, Bed-
ding and Briggs [2] showed that differentiation for quaternions is less obvious
as for reals and complexes, because of susceptible to different approaches3; they
also focused on related consequences in iteration theory, such as the generation
of the Mandelbrot set MH for the classic quaternion quadratic iterator

h2 + c (h, c ∈ H) (1.1)

and on ‘regularly iterable linear quaternion maps’, i.e. quaternionic functions
whose iterates preserve regularity under iteration. Latest results, for dynamics
of quaternion maps, are due to Jazek and Petek [10], by Lakner and Petek
[11] and by Petek [16] during mid 1990s, where either analytical and dynami-
cal properties are deepened: for example, one mentions the ‘equator’ concept,

2Existing in 4 dimensions, they require to be submersed from R4 to R3, or to R2, for drawing purposes.
3See also Cullen-Rinehart’s [3, 17], Fueter’s [5], Sudbery’s [18].
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already noted by Holbrook in late 1980s and referring to the distribution, in-
side MH for (1.1), of Julia sets intersecting the imaginary axis at least twice
or more often. In the same spirit as original Norton’s, one sees a recent soft-
ware production, devoted to display Julia sets in higher dimensions, such as for
hyper-complex numbers and octonions.

2 Basics

2.1 The pixel grid

The computer generation of Julia sets in C is mainly based upon a ‘walk’ along
the screen rows and columns. For each screen point P , one defines an ordered
and unique pair of coordinates (x, y), associated to the complex ρ = x+ iy. Let
f be a given map, so the goal is to set a color, related to the value of the n-fold
iterate ρn = f ◦n(ρ), at P . This algorithm resumes below into pseudo-C++
code. The two nested for loops allow to walk through the screen:

for ( int y = 0 ; y < h ; y++ )
{

for ( int x = 0 ; x < w ; x++ )
{

find the complex value z
of the ordered pair (x,y);
iterate(z) ;
plot(x,y,color) ;

}
}

Y

Xu -

?

Figure 2.1: The Walk. It starts from
the top left corner (0, 0), according to
the standard computer display, up to
the bottom right point (w− 1, h− 1).

Let also w and h be the screen width and height respectively. This process
can be exported to quaternion Julia sets JH, but at the cost of some proper
changes. A quaternion q ∈ H (4) is a wider numerical extension of a complex
value and consists of 4 components5 r, m, n, p ∈ R. Then one has:

q = r + im + jn + kp (2.1)

where i2 = j2 = k2 = −1 and multiplication is non-commutative; so quaternions
are not an abelian group.

4The letter ‘H’ refers to the first letter of ‘Hamilton’, the inventor of quaternions.
5From latin ‘quater ’ : four.
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3 The algorithm

3.1 Tips for the 3-D model

How can 4 coordinates fit the 3-D rendering model of a quaternion Julia set ?

From a mathematical viewpoint, these sets cannot show fully up in R4,
so digital pictures of submersions to R2 or R3 have to be produced. R3 was
the most widespread solution adopted: each screen point will be displayed
according to any triplet within the 4 components; these 3 values are set as
X-Y -Z coordinates. While walking through the axes, one matches R3-points
to quaternions q (2.1); the remaining fourth vector is initially set to 0. Every
q is now ready to be iterated and colored. Situation slightly complicates as
one moves later from 3-D to the 2-D screen. The two points below refer to
the simplest approach, which has to be dropped off for the considerable loss of
numerical accuracy as one re-scales . . .

1. . . . the original 3-D model into the unit cube C, with side l = 1. Here
old coordinates are normalized : i.e. one gets a common basis to re-scale the
model to new arbitrary dimensions.

2. . . . while moving from R3 to Z2
+ (the bi-dimensional computer screen

with positive integer coordinates).

Best and fastest results come if these two steps are no longer regarded.

A first efficient solution comes from basic consid-

u
u
u

'

&
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%

'

&

$

%
u uu

z

z
:

Figure 3.1: Injectivity.

erations in General Topology. Given two topological
spaces A, B, let f : A → B be a one-to-one map (or
injection), so f(x1) 6= f(x2) for any pair x1, x2 ∈ A

where x1 6= x2. This new model will help to match
each quaternion number (in 4-D) to a screen point

(in 2-D). For not losing numerical precision in the way, one suggests to apply
the reverse path from the screen to quaternion space:

Z2 → R3 → H;

the graphical aspects concern Z2 and R3 exclusively, while precision more
involves with H. Things will get far more interesting as one notices that the
escape method [1] cannot be solely applied to display JH because it just colors
those points whose orbit is trapped into the complement set HF = H\HJ : the
‘Fatou set’. But the problem here is that, since several points of JH relate
to the same iteration index by means of the escape method, they condense

Electronic Journal. http://www.neva.ru/journal 4



Differential Equations and Control Processes, N 4, 2005

into a cloud with a same color; thus details of JH will not come out and the
index cannot be applied to define a color as in C. A good solution is to apply
an illumination model, like the efficient ‘Phong’: this is a good compromise
between fast computations and an artificial light rendering with high quality.

3.2 Iterations

The example code below is one of the few elements in common with the complex
case. The point q is iterated under q2 + c (q, c ∈ H) and a test, if q ∈ HJ

6, is
performed. In computational terms, the while loop arrests as the orbit escapes
the test ball of given radius or when the maximal iterative index is attained
to prevent endless looping. This function returns a boolean value in order to
know if conditions, for q to be plot on the screen, are met.

Figure 3.1: Rotated slice of the filled-
in Julia set for h 7→ h2 − 1.5.

Figure 3.2: A ‘papillon’ Julia set for h 7→
1

h2
+ q, q = 0.19− 0.5i + 0.1k.

BOOL quIterate( quaternion q, quaternion c,
int& count, double& length,
double radius, int comp_limit )

{
quaternion next_q ; // next point in the orbit
count = 0 ; // set the iteration index for start
BOOL bDraw = TRUE ;

while ( bDraw )
{

length = qu.abs() ; // computes the absolute value
next_q = q * q + c ;
count++ ; // the iterative index

if ( length > radius ) return bDraw = FALSE ;
else if ( count == comp_limit ) break ;
else q = next_q ;

}

6In this topological configuration, the orbit does not escape to ∞.
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return bDraw ;
}

3.3 Plotting the screen

Assume the screen at the logical machine level: a grid of pixels, where each
element is uniquely defined by one ordered pair of coordinates (x, y). Let the
quaternion hyper-cube be an ideal 3-D metric model of the geometric locus we
are going to scan and find which seed points therein belong to HF . As one
drops the fourth coordinate p and sets it always to 0, the Quaternion hyper-
cube turns into a real 3-D cube and becomes an optimal descriptor for our
purposes in geometrical terms exclusively: the resulting space is homeomorphic
to any cube in R3, but quaternion calculus still holds here.

Figure 3.1: Mapping onto the screen. On the left, a matrix rep-
resenting the screen. On the right, a perspective model of the cube.
Colors denote the matching between 2-D and 3-D models.

The exploration needs both metrics and a way to run through the three
dimensions. All this is supplied by a pair of minimum and maximum values per
each cube side X-Y -Z. For example:

double x_interval = x_max - x_min ;
double y_interval = y_max - y_min ;
double z_interval = z_max - z_min ;

at this point, we also assume three discretization (dx, dy, dz) values for the
x, y, z axes for locating any point within the quaternion cube.

double dx = x_interval / (double)window_client_area_width ;
double dy = y_interval / (double)window_client_area_height ;
double dz = z_interval / (double)discretization ;

So a one-to-one map from the screen onto the 3-D model is set. The walk
can be now performed:
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for ( int py = 0 ; py < img_h ; py++ )
{

for ( int px = 0 ; px < img_w ; px++ )
{

x = x_min + (double)px * dx ;
y = y_min + (double)py * dy ;
z = z_min ;
...

}
}

As in figure (3.1), the routine re-

Figure 3.2: Piles of visibility.
Screen and cube are ideally glued here
to lessen the association as in figure
(3.1). The black arrow indicates the
scanning direction and the blue one
refers to the found JH-point within
that same pile in the 3-D model.

lates each a 2-D point to one pile
of contiguous sub-cubes in the 3-D
model; one runs through the pile until
a point of JH is (possibly) met. If so,
the run stops and one does not care of
next sub-cubes7: they are discarded
from computation since being invis-
ible from the pile start (the screen
surface, in our terms); in fact they
are hidden by the color of the related
screen point, like in figure (3.2).

3.4 The scanning direction

It consists in running from (x,y,z = Zmin) to (x,y,z = Zmax): so z ranges
through the interval | Zmax − Zmin |. According to the discretization of the
interval, one attains every single point step by step and tests if it belongs to
the HF by calculating the orbit via the function coded in section (3.2). If so,
JH is met and one stops the scan for that pile. Otherwise z increments by dz

again and again up to Zmax.

3.5 A prime Boundary Detection and refinements

Now the heart of the whole process. First we recall a definition from General
Topology: for any subset A of a topological set X, the boundary ∂A is the set
A∩X\A. See figure (3.2). In our terms, X and A are played by the quaternion
cube and the filled-in JH respectively.

7They are assumed transparent.
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Figure 3.1: The testing walk.
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Figure 3.2: A boundary example.

Therefore the necessary and sufficient condition to detect JH is to find
sufficiently small regions intersecting with more than one basin. An higher

Figure 3.3: Slices of the Julia set for h 7→ h2 − (0.55 + 0.55i).

discretization level assures a stronger graphic refinement, even if at the cost of
huger computations. The approach relies on a two-steps boundary recognition,
in order to find a sufficiently close neighborhood and set the ground for a next
test-based upon analogous rules: actually one has to check if two contiguous
points lie inside different basins. A first detection is quite easy. Since the
typical basins distribution for generic polynomials always assumes a region of
convergence to ∞, one can resume as follows:

1. if two contiguous points are seeds of bounded orbits to a same attracting
fixed point, then they are inside the filled-in JH;

2. if one point is seed of a bounded orbit, but the next one does not, then
JH was crossed by the scanning path;

3. if both contiguous points are not seeds of bounded orbits, then they belong
to the basin to ∞, i.e. outside the filled-in JH;

In coding terms, boundary is detected as the logical xor operator returns
true: at most one condition is to be met. In practice, one assumes a path
running from zmin up to zmax, so that the routine quIterate, returning false

until z is inside the basin to ∞, finally yields true as one enters the filled-in
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Figure 3.4: Meeting the boundary.
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the Pile

Figure 3.5: Crossing the Julia set (see-
ing through piles of pixels).

JH (see fig. (3.4)). As the boundary is trespassed, we get one step back to the
previous point (see figure (3.5)). Here the second refinement process begins.

do{
Take on three temporary x,y,z
(actually only z would range over the interval,
i.e. x, y are fixed per each pile);

Set them into a quaternion for the further test ;
Then iterate it !

Is the n-th image point z_n trapped
into the filled-in Julia set?

NO: set the minimal bounding value of the interval at z_n ;
YES: set the maximal bounding value of the interval at z_n ;

}while( z <= z_max );

Algorithm for a first boundary detection.

Figure 3.6: Boundary Detection. The points of the side,
having z = zmin, are fired towards the set until they crash
onto it. This process behaves as a sort of envelope and it
models the 3-D space as the Quaternion Julia set shape.

Things slightly get more complicate (but even more appealing for program-
mers!) as the boundary locus is refined by turning the above routine into a
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new recursive loop until the interval shrinks under a limit value, when the
given accuracy is reached. The graphical discussion appears in fig. (3.7). Let
interval dz be our interval. Really one does not find the exact locus of JH,
but just very close points to it.

do{
Take on three temporary x,y,z
(really only z would range over
the interval; i.e. x, y are fixed);

Set them into a quaternion for the further test;
Then iterate it !

Is the n-th image point z_n trapped
into the filled-in Julia set?

NO: set the minimal bounding value of the interval at z_n ;
YES: set the maximal bounding value of the interval at z_n ;

ADDITIONAL CODE:
... then shrink interval_dz somehow;

}while( test if interval_dz is sufficiently
wide to keep this code in progress ) ;

The refinement algorithm.

u uU� w
steps 1st 2nd3rd 4th

=� ^� ^U

Figure 3.7: A scheme resuming the algorithm work
to progressively refine the position of the boundary
locus by changing the ends of the test interval.

Figure 3.8: A quaternion ‘Dendrite’ for h 7→ h2 + i and two blow-ups.
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3.6 Turning on the light

Since we adopted a 3-D model to draw JH, an illumination model is required.
We will not explain the technical details, because it is not a goal of this work
(see [4]). The Phong model was adopted here because of granting good results
and fast computations. Lambertian approach was also tried, but we do not
finally push for it because details8 are not sufficiently enhanced (see (3.1, 3.2)).

����
S

����
W ����

E

����
N

����
Pt

Figure 3.1: The four movements
from a given point. Figure 3.2: Slice of the Julia set

for h 7→ h2 + q, q = −0.8 + 0.4i.

Suggestions will be given. As a JH-point is found, take on 4 neighboring
points (see fig. (3.1)). Each point of the neighborhood has to be tested via
the previous boundary detection method for assuring that points may be inside
or out of JH. These points are required to generate a neighboring ‘surface’
and compute the related normal vector: precision is crucial for the light ray
intensity and assesses the rendering quality of the illumination model. The
code to compute the normal vector is given below. Let each point be defined
by a triplet (x, y, z) and that n, s, w, e are neighboring points, then:

n_v.x = ( e.z - w.z ) * ( dy + dy );
n_v.y = -( s.z - n.z ) * ( dx + dx );
n_v.z = ( dx + dx ) * ( dy + dy ) ;

These are the normal vector n v coordinates, later applied to find out the
light ray intensity I according to the illumination model. Values of n v are
normalized9.

3.7 Comparing the illumination models

The different light management is the most evident issue between the following
two figures: ambient parameters being equal, the figure (3.1), rendered by the

8Here required to point out to this complicate boundary.
9Ranging the intensity I between 0.0 and 1.0, they can be easily re-scaled into other color systems. For

example, let an indexed palette of 256 (= 28) entries; the value of I multiplies by the possible palette colors
(here, 256) to find the color index: color index = (int)( I * 255.0 ) (indexes are zero based.).
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Figure 3.1: Lambertian. Figure 3.2: Phong.

Lambertian approach, looks flatter than (3.2), processed by Phong shading.
Hence one prefers the latter for detailed renderings. Refer to [4] for technical
details and code implementation.

4 A new approach: the cut-off rate

4.1 Limitations of the standard method

In C, three are the different topologies

Figure 4.1: Plotting the Julia set
for iterates of equation (4.3) by
the standard method. In figure
(4.7), the same was plot by the
cut-off rate method.

of Julia sets: connected, totally disconnected
and two dimensional (here J ≡ Ĉ). The first
two cases come up for quaternions too and one
wonders if J might be analogously an hyper-
volume in 4 dimensions filling H completely10.
With regard to quaternions, one notices that
the standard method is not easily extendable:
it just covers the case of JH homeomorphic to
a closed surface (possibly with curves of mul-
tiple points), i.e. a bounded object and sur-
rounded by the basin to ∞: see cases listed at

page 8. This always applies to non-linear polynomials because of the attracting
point at ∞. By definition, the filled-in JH includes all h for which |fn(h)| is
bounded as n → ±∞ ([13], p. 71). The inverse iterates, for n → −∞, suggest
the extension required because they11 might also run through unbounded basins
of convergence to finite attracting points. Inside such basins, inverse iterates
escape to J which extends to ∞: thus the finite test (hyper-) ball of finite ra-
dius becomes obsolete to perform a full boundary scan. The standard method

10And, in general, being n-dimensional with regard to the n vectors of the numerical field involved for the
generation of J . As far as the author knows, there is no such work devoted to fix this question in details.

11As for the iterates of (4.3).
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(A) (B)

Figure 4.2: (A) shows the iteration of the rational map 2h3+1
3h2+1

in C;
(B) shows the same method in H. As predicted from the theory,
the second figure can be intended as the 2π-rotation, around the
X-axis, of the first one. One also notices that, according to the
goal of the extended approach, the interior of the basins was not
drawn in (B) in order to evince the Julia set exclusively.

strictly depends on the functionality of such ball (a disc in C) testing if orbits
are bounded or they escape to ∞: one implicitly assumes here that there is only
one finite attracting point and that its location, together with the related basin,
is a priori known to lie inside that test ball. In addition, the standard method
applies to just one attracting point or to one basin: another limitation concerns
the heuristics because, for non filled-in JH, the previous considerations on the
metrics, related to the test ball radius, no longer apply and they are differently
accounted to check each iterate. As the problem generalizes for n attracting
points δ, one immediately realizes that:

a. checking n trap-balls gets more and more computationally expensive;

b. the locations of all δ cannot be calculated via direct formulas for equations
of degree d > 4 and thus one cannot count on an a priori knowledge: then
(a.) would be unapplicable however.

Slice for h2 − (0.66 + 0.55i). Julia set for h2 − (0.66j + 0.55k).

Overcoming these two points will drive to the extension required: once the
test ball is dropped off, the method improves and extends to JH with zero
interior or where the neighboring basins also extend to ∞.
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4.2 The extension

It mainly relies on a re-elaboration, in metric terms, of the basics of the theory
on normal families12. Let p be a point very close to a given Julia set J and let
the point-set distance be

m = ρ(p, J) = inf{ρ(p, a) : a ∈ J}.

Higher order iterates pk = fk(p) converge closer and closer to the attracting
points δ, so one finds that

lim
k→∞

ρ(pk, J) → A = ρ(δ, J) (4.1)

holds non-uniformly. The reverse statement can be easily deduced too,
assuming non-uniformity again; so, given a value q > 0 of the iteration index
k for forward13 images (k = 0, . . . , q, . . . , +∞), in general q splits this whole
sequence into two subsets so that, metrically speaking, if k < q and for very
close p to JH, the images pk are closer to JH than the forward images pk, k ≥ q.
This usually rules for orbits entrapped inside filled-in Julia sets: in fact, for
bounded basins, |pk| remain bounded too inside a finite radius disc trapping the
orbits and helping to detect J . One solution is to apply a uniform convergence
property in the neighborhood of each δ, allowing to get rid of the location of
any δ (b. in §4.1). Orbits will enter a sufficiently close neighborhood A(δ, ε) as
given numerical properties are met, namely when

|hn − hn+1| < ε, (4.2)

where h ∈ H, n ∈ Z+ and a fixed ε > 0, lim ε = 0. Now one needs to ‘filter’
those iterates being closer and closer to JH: in this sense, the screen points,
associated to quaternion values taking higher and higher iteration indexes to
converge and enter A(δ, ε), shall be plot exclusively. This extension is then
defined ‘cut-off rate’.

4.3 Application to iterates

A basins configuration, often arising from rational maps resulting from Newton-
Raphson’s method applied to an entire f(h), will be examined. For example

12Authored by Paul Montel (1876-1975) and playing a fundamental role in the ground-breaking researches by
Fatou and Julia in holomorphic dynamics in one complex variable over Ĉ, from late 1910s to 1920s.

13On the contrary, negative values refer to backward iterates of a map f . They were not deliberately take
into account here for sake of ambiguity, because they can be also regarded as forward iterates of inverse map
f−1: since the new algorithm does not work on their direct formulas, they have been left out of the discussion.
The algorithm itself is based upon the playing with forward iterates exclusively.
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let f(h) : h3 − 1, the transformed map is

Tf = h− f(h)

f ′(h)
=

2h3 + 1

3h2 . (4.3)

Let f be an holomorphic function, then

f 0(z) = z, f 1 = f(z), . . . fn(z) = fn−1(f(z))

are said to be the iterates of rank 0, 1, . . . , n. The same concept can be applied
to the successive iterates T n

f . In iteration theory, one knows that, for any

cγ

p2r rrrpn

p1

. . . 9

�
)

Figure 4.3: Zoom on the neighboring
curves Dn, all converging to the at-
tracting fixed point γ.

1

NO

YES YES

Dn

Dn−1

r

Figure 4.4: Iterates whose distance is
smaller than a given value are not con-
sidered for the final plot.

attracting fixed point14 γk, the total basin Bγk
of attraction is the union set of

all the points whose images, under iterations, converge to γk:

lim
n→∞

fn(z) = γ, ∀z ∈ Bγk
.

Let D1,D2, . . .Dn, be Jordan curves bounding simply connected domains
D1, D2, . . . , Dn around γk respectively, so that Dn ⊃ Dn+1; one would see
that, in metric terms, the point-set distance dn, between the forward iterates
p1 ∈ D1, p2 ∈ D2, . . . , pn ∈ Dn, shrinks to 0 (see figure (4.3)) and one finds
again the inequality (4.2): dn = |pn − pn−1| < ε, ε > 0, lim ε = 0. So, generally
speaking, one can state that, given a seed point w ∈ Bγk

and close to JH, the
distance dn → 0 as n → ∞. Conversely, if dn is constant, then n → ∞ for
|fn(w) − fn+1(w)| < dn to hold, as w gets closer and closer to J . The goal is
to ‘isolate’ the points closer to JH and plot them exclusively, but with regard
to other basins distributions where the test ball, strictly depending on the lo-
cation, cannot work for granting good results any longer. Figure (4.5) comes
from the iterates of (4.3): the basins location, as well as the attracting points,

14This extends to such cycles of higher order too: not considered here for sake of simplicity.
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Figure 4.5: Julia set for (4.3) in C.

Figure 4.6: The front side in H.
The cut on the background is
due to the coordinates of the in-
vestigation cube.

Figure 4.7: The rear side. The grey region at
the front accidentally appeared due to the cut
for the coordinates of the investigation cube,
but helps to find similarities with the analogous
experiment in C and displayed in figure (4.5).

might be out of the ball. According to the theory, JH show up as 2π-rotation
of the analogues sets in C and around the X-axis. This approach works like a
wall and it is ruled by the condition:

|Pn − Pn−1| > r, (4.4)

where r is the ball radius as in figure (4.4). In C++ coding terms, if qu and
next qu are two successive iterates with given indexes n and n+1 respectively,
then the bailout condition of the trapping disc in the standard method:

next_qu.abs() <= bailout

is finally replaced by

next_qu.distancefrom( qu ) >= bailout

where the bailout is set > 1 in former inequality but ranges from 0 to 1 in
the second one. The operator ‘≥’ achieves a reverse task by arresting the orbits
out of the ball itself, preventing points inside the ball from further computations,
namely the forward iterated domains Dn whose distances is dn > r.
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Figure 4.8: Standard method. Figure 4.9: Cut-off rate method.

4.4 Considerations

The cut-off rate shall not be confused with the test ball radius. The metrics
here involved do not regard the areas of forward domains, but their distances.
So only closer points to JH are plot, like in figures (4.6) and (4.7). Best graphics
are retrieved as the bailout radius r and the maximal iterative index are more
finely tuned. This new method is also able to yield good plots for filled-in JH
(see comparison figures (4.8), (4.9)). Cut-off rate runs a bit slower than the
standard one but can be applied for different configurations for JH.

Figure 4.10: Julia set for h 7→ sin(h). Figure 4.11: Mandelbrot set for h2 + c.

5 The internals of QHD

R3-submersions are solid models and they just wrap the visible slice of JH in
order to reduce computation times. In technical terms, the scan splits the
given cubic region into a 3-D grid of l3 sub-cubes and runs through rows and
columns, but does not scan the whole cube: it just stops, per each row, when
the boundary is met and then restarts from the next row.

5.1 The visual interface

Qhd is an application opening with a user-friendly, small interface to choose
the set to be drawn (‘Julia’ or ‘Mandelbrot’), the drawing algorithm (‘Standard’
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or ‘Extended’), a default set of formulas and the chosen illumination method
(‘Simple Lambertian’, ‘Lambertian’ and ‘Phong ’). When properties are dis-
played, the same window expands and shows additional parameters: the details
level (sensibly incrementing the computation times), number of iterates, the
degree of predefined maps, the region coordinates and the value of parameter c

which works differently as formulas are input to plot Julia or Mandelbrot sets.
Input features also list the load/save of metrics related to the displayed object,
the bailout value playing as the radius of the disc entrapping the orbits in the
standard method or as the value ε in the inequality (4.2) of the extended ap-
proach. The main windows offers a small preview for quick plots, but one can
display a larger magnification window. Additional features include a player to
stop the drawing process manually, a window to rotate the given object along
the three X-Y -Z axes together with a panel to manage all parameters related to
the illumination models (location of light points, intensity, ambient diffusion).
The output allows to save the current picture into a graphics file or to be copied
into the clipboard and exchange it with other applications.

6 Experiments

In this section, we try to apply the cut-off rate algorithm and display what
happens in H for other basins distributions which are typical in complex holo-
morphic dynamics. The same examples will be processed through the standard
method, in order to compare the related results.

6.1 Wandering domains

One special configuration occurring for transcendental maps is the wandering
domain. In 1983, Sullivan proved that it cannot occur for rational maps.

Definition 1 Given the Fatou set F , ‘Wandering domains’ are components
U ⊂ F such that fm(U) ∩ fn(U) = ∅ for any integer m 6= n, with m, n > 0.

As empirically shown in (6.1/B), such domains appear for quaternion iter-
ates too. One sees the large filaments in (B) are just due to a little iteration
index: for higher order iterates, they will get thinner and thinner but it was
deliberately kept small here for enhancing those details which would be hardly
visible instead. The largest two nuclei, being clear in the 2-D picture in (A),
are less visible in (B) because wrapped by a cloud of 3-D dust arising from the
analogous wandering distribution in the submersion of H into R3.
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(A) (B) (C)

Figure 6.1: Wandering domains in C and in H for the function h + sin(2πh). The
picture (C) displays (B) as computed by the standard method: results are insufficient
here. Colors in (C) have been inverted to set the few points more visible.

6.2 Baker domains and Siegel disks ?

The dynamics of transcendental maps in C include a basins distribution which
cannot occur for rational ones: the ‘Baker domain’, in honor of his first discov-
erer Noel Baker. Given the Fatou set F , it is a bounded invariant component
U = f(U) ⊂ F , where there is an essential singularity a ∈ ∂U such that all
iterated orbits inside U converge to a. Displays of Baker domains were not
provided here because examples, where the related essential singularity is close
to infinity, are the only ones known to the author; since region coordinates are
finite, QHD cannot reach any sufficiently close look-up15. Siegel discs, whose
existence was already conjectured in early 1900s but proven by Carl L. Siegel
only in 1942, are components of F and conformally isomorphic to a disc; the
dynamics therein are rotational and the discs come up either for polynomials,
rational and transcendental maps. They arise when the first order derivative of
the non-linear iterated map is, at the indifferent point, in the form |e2πiθ| = 1,
where θ ∈ R\C and enjoys a diophantine condition. Siegel discs in H are not
displayed here due to this early version of the program: the generation of JH
depends on a wrapping around such object, that is, it is not processed and
displayed in its full solidity but only from the exterior up to J . The related
visualization requires here the dissection of the basin.

6.3 Deforming the Mandelbrot set

The Mandelbrot set MH is generated from a parameterized function in the form

hn+1 = f(hn, q), h, q ∈ H, (6.1)

15For example, this comes easier on the Riemann sphere, which is the compactification of C; but there is no
analogue trick in H !
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where h0 is set at one element of the critical points set

C = {c : f ′(c, q) = 0}

of this function itself and q ranges over a given region. One assumes that
(6.1) is the quadratic iterator

h2
n + q. (6.2)

In general, if the iterates of (6.1) are bounded, they belong to MH and,
according to the theory, every critical point c belongs to a basin of attraction.
Since, specifically, J from (6.2) are a priori known to be totally disconnected
or filled-in objects, then each bounded orbit implies that J , related to a given
q, is connected and filled-in; otherwise, it is totally disconnected.

(A) (B) (C)

Figure 6.1: (A) shows MH when h0 is the critical point of equation (6.2); h0 was
slightly modified in (B) and (C), producing distortions of the original object.

With the goal of playing with parameters and let them get at any level of
computation, QHD can parametrize h0 too and let it range inside a neighbor-
hood of a critical point c. We noticed that MH turns into a ‘quasi-MH’ 16. In
the spirit of the experiments in figures (6.1), we just empirically noticed that
the quasi-M sets related to close-to-critical points – see figures (B) and (C)
– are not only subjected to distortion, but they are disconnected too. So we
wondered if such quasi-MH sets are always disconnected, that is, they always
show discontinuity regions for the parameter q when h0 is close-to-critical. If
so and with no pretension of deepening this topic, we could pose two questions
to advance a strategy to attack the so-called MLC (Mandelbrot set Local Con-
nectivity) conjecture: is MH locally connected when h0 ∈ C exclusively ? Is it
always disconnected if h0 ∈ H\C ?

16Really this naming convention can be longer applied and a new one should be found because, without the
exact value of the critical point, this same computer experiment, on which M relies, makes no sense anymore.
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