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1. The Basic Mandelbrot Set 

 The Mandelbrot figure, and the concept of fractals in general, have 
become widely known since they were first proposed by Benoit Mandelbrot and 
others (1–5), and subsequently developed by H. O. Peitgen and coworkers (6–8).  
It is amazing that figures of such beauty and literally infinite complexity could 
arise from very simple mathematical operations.  The basic Mandelbrot figure, 
diagrammed in Figure 2 and depicted in Figure 3, is a plot on the complex 
plane, z = x + iy, of the results of iterating the equation: 

     z' = z2 + c            (1) 

where z' = x' + iy' is the new location of a point on the complex plane; z = x + iy 
is the previous point; and c = cx + icy is a selected starting location on the plane.  
Depending on the choice of c, the points produced by successive iterations of 
Equation 1 will either (a) move off to infinity, (b) migrate to zero or some other 
fixed point or points, or (c) cycle around the same set of repeated values forever.  
All starting points, c, which do not ultimately iterate to infinity are defined as the 
Mandelbrot set, and these points are black in Figure 3.  Points which iterate to 
infinity lie outside the Mandelbrot set, and are colored in Figure 3.  Such a 
simple mathematical idea produces unexpectedly intricate results.  All points 
within the Mandelbrot set are connected, and the border separating the set from 
the outside is infinitely complex; it is, in fact, a fractal boundary.  
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 The z2 Mandelbrot plot has been popularized in the technical and non–
technical literature and is thoroughly familiar.  But what happens if the iteration 
formula of Equation 1 is made more complicated—if higher powers of z are 
used, or other functions of z such as sin(z) or ez or ln(z)?  That is the subject of 
this paper.  Results presented here have been verified by comparing the output 
of two versatile fractal programs described in the Appendix:  Dennis C. De Mars’ 
Fractal Domains (FD) and Peter Stone’s Fractal Explorer (FE).  This is an 
experimental and descriptive analysis of fractal behavior, rather than an attempt 
to derive behavior theoretically from first principles.  It is the work of an amateur 
in the original Latin meaning of the term: a lover of the mathematics and the 
relationships therein.  If it can create a similar love of fractal behavior in the 
reader, it will have achieved its purpose. 

2. The  Infinite Complexity of Mandelbrot Fractals 

 A defining property of fractals is that, upon magnification, they are seen 
to be self–identical or at least self–similar. The familiar 2nd order Mandelbrot of 
Figures 2 and 3 has a large pear–shaped central body, with one major lobe 
pointing to the left in the –x direction, smaller lobes above and below, and a 
cusp or junction between two halves of the main body to the right.  Its entire 
boundary is ringed by secondary lobes.  These secondary lobes, if examined 
carefully, are seen to be ringed by even tinier lobes, and those are bordered by 
microscopic lobes in their turn.  Enlarging any given segment of the Mandelbrot 
boundary yields a boundary that is fully as intricate as the original, and the 
complexity extends to infinity.  Indeed, that is essentially the definition of a 
fractal.  In an oft–quoted paraphrase of Jonathan Swift: 

  "Big fleas have little fleas, upon their backs to bite 'em, 
   And little fleas have lesser fleas, and so on ad infinitum." 

 Figures 3–17 are a demonstration walk through fourteen orders of 
enlargement of the z2 Mandelbrot, with tenfold magnification at each step.  The 
overall shape of the starting body is mimicked by an infinite number of tiny 
replicas which can be seen at every level of magnification.  When the process 
ends in a blur of rectangular pixels in Figure 17 after enlargement by a factor of 
1014 or 100,000,000,000,000, the fault lies not with the fractal itself, but with the 
number of significant figures carried by the computer program and our 
willingness to wait for lengthy iterations.  The complexity of the fractal itself has 
no limits.  (As an aside, the enlargement factor of 100,000,000,000,000 seen here 
would convert one sixteenth of an inch into the distance from Earth to the Sun.) 
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Two key issues are addressed in this presentation:  

(a) Can one extend the basic Mandelbrot function to higher powers of z, 
and introduce a meaningful scaling constant?  That is, can:  z’ = z2 + c be 
generalized to: z’ = a*zn + c? 

(b) Can more general trigonometric or exponential functions F(z) also be 
iterated via:  z’ = a*F(z) + c?  If so, can one predict in advance how such functions 
will behave? 

3. Escape Radii and Scale Constants in 2nd Order Mandelbrots 

 The ultimate test of whether a point on the xy plane is to be excluded 
from the Mandelbrot set is whether it iterates to infinity, given an infinite 
number of iteration cycles.  An infinite number of cycles is not computationally 
practical, and so a compromise is used: a point is excluded from the Mandelbrot 
set if during a certain number of cycles it has moved farther than a preset 
distance termed the escape radius, ER.  It can be shown that any point which 
moves past |z| = 2.00 will eventually escape to infinity, so the minimum 
acceptable escape radius for iteration with Equation 1 is ERm = 2.00. 

 Figure 18 shows the results of iterating Equation 1 using various choices 
of escape radius.  An ER of 2.00 or greater yields a mature 2nd order Mandelbrot 
figure which remains invariant in both size and shape as ER increases still 
further.  But if one chooses an ER less than 2.00, then one is concluding 
erroneously that all those points in the Mandelbrot figure that extend outside the 
ER limit are in fact escape points, and not a part of the Mandelbrot set.  The 
residual figure becomes more and more inaccurate and misshapen as ER falls, as 
though the constricted radius were drawing a noose about the mature figure.  At 
ER = 1.00 the outermost details of the mature figure have been smoothed away.  
At ER = 0.632 all features have been eliminated except for an indentation at the 
right.  For ER = 0.200 or less, only a smooth, featureless disk remains, of radius 
equal to ER.  In summary, below the critical minimum ERm value one has only a 
partial figure, that which lies within a circle of radius ER.  For ER = ERm a 
complete Mandelbrot figure is seen, which is independent of the precise value of 
ER. 
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 What happens if one iterates Equation 1 with an additional scale factor, a? 

     z' = a*z2 + c            (2) 

If during subsequent iterations each successive z’ is enlarged by a factor, a, then 
the threshold escape radius need only be 1/a of its previous value, or: 

     ERm = 2/a            (3) 

 In addition, the size of the mature 2nd order Mandelbrot figure decreases 
as a increases.  If Wa is some consistent measure of the width of the figure, then: 

     a*Wa = constant = K           (4) 

Throughout this paper, a capital Wa will indicate the width of a Mandelbrot 
figure itself at a particular value of a, whereas a lower case w will represent the 
width of the image frame, as a measure of relative magnifications.   For a 2nd 
order Mandelbrot, the most dependable dimension is its width measured up 
and down the imaginary axis, avoiding the long spine pointing to the left.   

 Figure 19 illustrates two features:  the way the Mandelbrot image expands 
according to a*Wa = K as a falls, and the way the image begins to degrade when a 
sinks below the threshold of a = 2/ER.  ER is fixed at 10 while a is varied from 
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2.00 down to 0.01.  With ER=10 the critical transition occurs at a = 2/ER = 0.20.  
Above this point a mature Mandelbrot results, of width decreasing linearly 
according to Equation 4.  Below a = 0.20 one sees the expected planing away and 
smoothing of the figure, leading to a featureless residual disk by a = 0.02.   

 

 A graphic way of thinking about what is happening is that, as a decreases, 
the mature Mandelbrot figure in this example expands according to Equation 4 
until it touches the perimeter of radius ER = 10 when a = 0.20.  As the figure tries 
to expand still further at lower a, it clashes with the limiting circle and is 
deformed.  The features seen in Figure 19 below a = 0.20 are not independent 
objects; they are incomplete, deformed Mandelbrots.  That for a = 0.10 can be 
restored to its mature form by increasing ER to 20 so that once again:  a*ERm = 2.  
Even the featureless disk at a = 0.01 can be given its full mature form by 
increasing ER from 10 to 200, again making:  a*ERm = 0.01*200 = 2. 
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 Figure 20 summarizes this behavior by comparing Mandelbrot images at 
six different a values (horizontal) and five different escape radii (vertical), in 
intervals of the square root of ten for convenience.  For ER = 1 the Mandelbrot 
figure begins its collapse when a falls below 2.00.  The integrity of the figure can 
be restored by increasing ER to 3.16, but failure again occurs when a falls below 
0.633.  Increasing ER to 10 yet again saves matters temporarily, but only to the 
point where a = 0.200.  This stepwise correction process can be continued 
through ER = 3.16 to 100 and beyond.  A mature Mandelbrot figure can be 
obtained at any value of a, no matter how small, by making the escape radius 
sufficiently large.  

 

 All images in Figure 19 are at the same scale.  The first three columns in 
Figure 20 have a common scale, with a frame width of w = 260.  But the last three 
columns have been enlarged by 13 times (w = 20) in order to show details. The 
zig-zag boundary separates mature Mandelbrots from their incomplete 
manifestations below the ERm = 2/a threshold.  Note that below the threshold 
the size of the incomplete Mandelbrot figure depends only on ER and not upon a.  
But above this threshold the size of the mature figure depends only on a according  
to:  a*Wa = K, and is independent of escape radius.  
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4. Higher Order Mandelbrot Figures 

 Higher order Mandelbrot figures are obtained by iterating the expression: 

     z' = a*zn + c            (5) 
 
where n is the order of the equation.  Results for a = 1 and increasing values of n 
are shown in Figures 21–22.  The Mandelbrot figure for n = 3 has two primary 
lobes extending up and down the vertical imaginary axis, and two incursive 
cusps or junctions to left and right along the horizontal real axis.  It is 
surrounded as before by an infinitely complex set of smaller and smaller 
features. The figure for n = 4 has three main lobes, one of which points in the 
negative real axis direction. That for n = 8 has seven peripheral lobes.  
 

In general the iteration of Equation 5 with an exponent n yields an nth 
order Mandelbrot figure displaying n–1 primary lobes around a central body, 
separated by n–1 incursive junctions.  For odd n, with an even number of lobes 
and junctions, two of these junctions face right and left along the real axis.  For 
even n, one of the odd number of lobes points to the left in the negative real 
direction. 

 
Figure 22 also shows an extreme case of iterating z100 to produce a disk 

with 99 lobes.  Each of those lobes, when magnified, shows the infinite 
complexity expected from a fractal figure by the Swift principle enumerated 
above.  The set depicted in Figures 21–22 will be a standard for comparison with 
more complex functions, and will be termed "ideal nth order Mandelbrot 
figures".   
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 The constant a in Equation 2 is not limited to positive values.  If the first 
term in the iteration expression  z’ = a*zn + c  is negative, then the results are as 
shown in Figures 23–24.   Now lobes rather than junctions face right and left for n 
odd (e.g.:  5), and the figure for even n (e.g.: 4) extends a lobe to the right with a 
junction at the left.  One could think of the behavior with n even as a left/right 
reversal, and that for n odd as a rotation by 180°/(n–1).  But the simplest and 
most systematic description is one in which the intact figure is reoriented so that 
it interchanges positions of lobes (L) and junctions (J).  
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5. Scale Behavior for Higher Orders 

 Higher order zn Mandelbrots also shrink when scale constant a increases, 
but less rapidly than 2nd order.  Figures 25–26 compare image sizes after tenfold 
increase in a value, for representative orders between 2 and 100.  The higher the 
order, the slower the rate of shrinkage with a.  The behavior of a nth order figure 
is a generalization of the 2nd order expression with the image width Wa taken to 
the (n–1)st power: 

     a*Wan–1 = K             (6) 

This will be termed the scale   product   equation.  It predicts that a tenfold increase 
in a leads to a shrinkage of the image by a factor of Wa/W10a = 10[1/(n-1)].  A 2nd 
order Mandelbrot shrinks by a factor of ten as a rises tenfold; and a 7th order by a 
factor of 1.47.  But a 100th order Mandelbrot only diminishes by two percent in 
the same interval of a. 
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 The general expression for threshold escape radius, ERm, also is an 
extension of that for 2nd order.  As before, the minimum escape radius is that 
which just fits snugly around the Mandelbrot figure, touching its outer features 
but not cutting them off.  Figure 27 shows closeups of the leftmost lobe of the z4 
Mandelbrot with a = 1, at three closely spaced ER values.  For ER = 1.30 (right) 
the radius (orange circle) is too large to make contact with the Mandelbrot figure.  
For ER = 1.22 (left) it is too small, and some of the outermost spikes of the z4 
figure have been obliterated.  Only for ER = 1.26 (center) does the z4 figure make 
perfect touching contact with the escape radius circle, and this is precisely the 
value calculated for ERm from Equation 7, a generalization of that for z2: 

   a*ERmn–1 = 2        or        ERm = (2/a)[1/(n–1)]          (7) 
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Figure 28 tests Equation 7 against higher order Mandelbrots from z3 
through z10, with the escape radius drawn as an orange circle.  In each case the 
figure has been drawn using the ERm values derived from Equation 7, and in 
each case this choice just brings the radius into touching contact with the outer 
fringes of the Mandelbrot figure.  For a = 1 the critical ERm threshold for a 2nd 
order Mandelbrot had been at ER = 2.  For 3rd order the threshold is 2(1/2) = 
1.414, for 5th order it is 2(1/4) = 1.19, and for 10th order it is 2(1/9) = 1.08. 
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Shrinkage rates expressed as Wa/W10 a and Wa/W2a at a = 1 are plotted as 
a function of the order of iteration in Figure 29.  Escape radius thresholds, ERm, 
also are plotted.  Note that the reduction factor for doubling of a has exactly the 
same form as the ERm function at a=1, namely 2[1/(n-1)].  
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W1/W10 = 10^(1/n-1)

  W1/W2 = 2^(1/n-1) = Minimum ER [for a=1]

29

a*Wa
n-1  = constant.   Hence:  Wa/Wxa = x(1/n-1)

a*(ERmin)n-1  = 2.00.   Hence:  ERmin = [2/ a](1/n-1)

Iterating:  z ’ = a*zn  + c

(W = image width.  ER = Escape Radius)

 

The behavior of a 7th order Mandelbrot when ER and a are varied is 
shown in Figure 30.  The three rightmost columns (w = 28) are enlarged over the 
first three (w = 280) by a factor of ten.  The overall pattern is similar to that for 2nd 
order in Figure 20, except that the relevant minimum escape radius equation for 
7th order is:  ERm6 = 2/a,  not:  ERm = 2/a.   Hence the horizontal scale in a is 
greatly extended; for a given ER, the 7th order Mandelbrot figure remains intact 
to much lower a values than for 2nd order.  This is because the 7th order image, by 
Equation 6, increases in size much more slowly as a falls, and only reaches the 
ER boundary radius at a considerably lower a value.  Once again, below ERm the 
size of the image depends upon ER but not a, whereas above the threshold it 
depends upon a but not ER.   
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In sum, the shrinkage rate of mature higher–order Mandelbrot functions 
of the type zn is given by Equation 6: a*Wan–1 = K, and the minimum escape 
radius for a complete figure by Equation 7: a*ERmn–1 = 2.  Except for size, the 
same Mandelbrot figure is obtained at any a value above a = 2/ERn–1.  So it is 
indeed correct to maintain that for iteration of a single term zn, a has no meaning 
other than as a scaling factor.   

However, this is no longer true for even something so simple as the two–
term power series z3+z2.  As we shall see below, for these series the scaling 
constant a does have a real effect, establishing which term of the power series 
exerts the most significant influence, and determining the changing shape of the 
resulting Mandelbrot figure.   
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6. Iteration of Other Functions than zn:   Power Series and Fractal Order 

 Iteration Equation (2) can be generalized to: 

    z' = a*f(z)*g(z) + c = a*F(z) + c          (8) 

where f(z), g(z) and F(z) are functions of z to be investigated.  If both f(z) and g(z) 
are set equal to z, then the result is the basic 2nd order Mandelbrot of Figure 3.  If 
both f(z) and g(z) are each set to z3 (or to any powers such that the sum of their 
exponents is 6), then the result is the 6th order Mandelbrot seen at upper left of 
Figure 31.  Moreover, an identical but slightly larger 6th order figure (upper 
right) results when f(z) = z4 and g(z) = [1–cos(z)], suggesting that [1–cos(z)] in 
some manner has 2nd order properties.  The function [z–sin(z)] appears to have 
3rd order properties, as it yields a 6th order Mandelbrot figure when combined 
with z3.  Indeed, this 3rd order property of [z–sin(z)] is verified by the 
observation that the same figure results when both f(z) and g(z) are set equal to 
[z–sin(z)], or when iterating: 

    z' = a*[z–sin(z)]2 + c            (9) 

All images in Figure 31 are drawn to the same scale, and with a = 100 in order to 
ensure that each has its mature form. 
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 In short, [1–cos(z)] can replace z2 and [z–sin(z)] can replace z3 in any 
Mandelbrot iteration.  The shape of the iterated figure will be the same as that of 
simple zn, where n is the sum of orders of the individual factors f(z) and g(z).  
Other functions and their fractal order will be considered below.  In some cases 
the relevant nth order Mandelbrot figure is not immediately evident at a = 1.00, 
and either larger a values or larger escape radii must be used to reveal it.  In an 
anthropomorphic analogy, different functions with the same fractal order result 
in parent bodies that ultimately give birth to the same Mandelbrot figures, but at 
different values of ER and a.  At ER = 10 the “point of birth” of a mature z2 
Mandelbrot figure is a = 0.20.  For the 2nd order function tan(z)*arcsin(z) the birth 
point is around a = 3.15 and the image at a = 1 looks nothing at all like a 2nd 
order Mandelbrot.  As a more extreme case, iteration of the function tan(z)*(ez–1) 
does not produce a fully formed 2nd order Mandelbrot figure until a = 6.   

But what gives trigonometric functions such as [1–cos(z)]  and [z–sin(z)]  
their 2nd and 3rd order properties respectively, and why are the resulting 6th order 
Mandelbrots in Figure 31 of different sizes?  The rule for predicting fractal order, 
which we shall justify below, turns out to be surprisingly simple.  Table 1 lists 
power series expansions for a large number of algebraic functions. The fractal 
order of a given function is the same as the order of the first or lowest term in its 
power series expansion.  Indeed, one can designate the first term of the power 
series expansion of a function as its reduced function.  At large values of a 
iterations behaves as though the reduced function had been substituted for the 
given function.  
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TABLE 1.  POWER SERIES EXPRESSIONS FOR VARIOUS FUNCTIONS OF Z 
 
i.d. Function Series Expansion _d_ 
 
Inverse first order (all expansions begin with z–1) 
–1a. cosec (z)  = 1/z+(1/6)z+(7/360)z3+(31/15120) z5 +.... +1 
–1b. cosech(z)  = 1/z–(1/6)z+(7/360)z3–(31/15120) z5 +.... +1 
–1c. cotanh(z)  = 1/z+(1/3)z–(1/45)z3+(2/945)z5 –.... +1 
–1d. cotan(z)  = 1/z–(1/3)z–(1/45)z3–(2/945)z5 –.... +1 
–1e. arccoth(z) = 1/z+1/3z3+1/5z5+1/7z7 + +1 
 
Zeroth order (all expansions begin with a numerical constant) 
0a. 1 =  1 +1 
0b. ez    =  1+z+z2/2!+z3/3!+z4/4!+z5/5!+z6/6! +.... +1 
0c. etan(z) =  1 + z + (1/2!)z2 + (3/3!)z3 + (9/4!)z4+…. +1 
0d. esin(z) =  1 + z + (1/2!)z2 – (3/4!)z4 – (8/5!)z5 –…. +1 
0e. sinh(z)/z =  1 + z2/3! + z4/5! + z6/7! +z8/9! –.... +1 
0f. sin(z)/z =  1 – z2/3! + z4/5! – z6/7! +z8/9! –.... +1 
0g. cosh(z) =  1 + z2/2! + z4/4! + z6/6! +z8/8! –.... +1 
0h. cos(z) =  1 – z2/2! + z4/4! – z6/6! +z8/8! –.... +1 
0i. sec(z)  =  1 + z2/2! + (5/4!)z4 + (61/6!)z6  +.... +1 
0j. sech(z)  =  1 – z2/2! + (5/4!)z4 – (61/6!)z6 +.... +1 
0k. zn–1 =  –1 + zn –1 
0l. [sin(z)/z]” =  –1/3 + (12/5!)z2 – (30/7!)z4 + (56/9!)z6  –.... –3 
 
First order  (all expansions begin with z) 
1a. z  =  +z +1 
1b. ez–1  =  +z + z2/2! + z3/3! + z4/4! + z5/5! + z6/6!  +.... +1 
1c. ln(z+1) =  +z – z2/2  + z3/3  –  z4/4  + z5/5  – z6/6   +.... +1 
1d. sinh(z) =  +z + z3/3! + z5/5! + z7/7! + z9/9!  +.... +1 
1e. sin(z)   =  +z –  z3/3! + z5/5! – z7/7! + z9/9!  +.... +1 
1f. arcsin(z)  =  +z+(1/2*3)z3+(1*3/2*4*5)z5+(1*3*5/2*4*6*7)z7+.... +1 
1g. arcsinh(z) =  +z–(1/2*3)z3+(1*3/2*4*5)z5–(1*3*5/2*4*6*7)z7+.... +1 
1h. tan(z)   =  +z + z3/3 + (2/15)z5 + (17/315)z7  +.... +1 
1i. tanh(z)  =  +z – z3/3 + (2/15)z5 – (17/315)z7  +.... +1 
1j. arctanh(z)  =  +z + z3/3 + z5/5 + z7/7 + z9/9  +.... +1 
1k. arctan(z) =  +z – z3/3 + z5/5 – z7/7 + z9/9  –.... +1 
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TABLE 1.  POWER SERIES EXPRESSIONS FOR VARIOUS FUNCTIONS OF Z (cont'd) 
 
i.d. Function Series Expansion _d_ 
 
1l. sin(z3/2)/z1/2  =  +z – z4/3! + z7/5! – z10/7!  +.... +1 
1m. z/(1+z) =  +z – z2 + z3 – z4 + z5 – z6  +.... +1 
1n. z/(1+z2) =  +z – z3 + z5 – z7  +.... +1 
1o. [1–cos(z)]/z  =  +z/2! – z3/4! + z5/6! – z7/8!  +.... +2 
1p. [sin(z)/z]' =  –2z/3! + 4z3/5!– 6z5/7!  +....     –3 
 

Second order  (all expansions begin with z2) 
2a. z2 =  z2 +1 
2b. 1–cos(z)   =  +z2/2! – z4/4! + z6/6! – z8/8!  +.... +2 
2c. [z–sin(z)]/z  =  +z2/3! – z4/5! + z6/7! – z8/9! +.... +6 
2d. ln[cos(z)]   =  –z2/2 – z4/12 – z6/45 – (17/2520)z8  –.... –2 
2e. [z–tan(z)]/z  =  –z2/3 – (2/15)z4 – (17/315)z6  –.... –3 
 

Third order  (all expansions begin with z3) 
3a. z3 =  z3 +1 
3b. z–sin(z)  =  +z3/3! – z5/5! + z7/7! – z9/9!  +.... +6 
3c. z–tan(z)  =  –z3/3 – (2/15)z5 – (17/315)z7   –.... –3 
 

Fourth order (all expansions begin with z4) 
4a. z4 =  z4 +1 
4b. sec(z)–cosh(z) =  (1/6)z4 + (1/12) z6  +…. +6 
4c. sech(z)–cos(z) =  (1/6)z4 – (1/12) z6  +…. +6 
4d. [1–cos(z)]+ln[cos(z)]  = –(1/8)z4 – (1/48)z6 – (273/40320) z8  –…. –8 
 

Fifth order (all expansions begin with z5) 
5a. z5 =  z5 +1 
5b. arcsin(z)–sinh(z)  =  (1/15)z5 + (2/45)z7  +.... +15 
5c. arcsinh(z)–sin(z) =  (1/15)z5 – (2/45)z7  +.... +15 
5d. arctanh(z)–tan(z) =  (1/15)z5 + (4/45)z7  +.... +15 
5e. arctan(z)–tanh(z) =  (1/15)z5 – (4/45)z7  +.... +15 
 

Coefficient d is the divisor of the lowest order term in the series expansion. 
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As Figure 32 and Table 1 show, the reduced function for [1–cos(z)] is 
+z2/2!, and that for [z–sin(z)] is +z3/3! = z3/6.  Hence the two functions behave 
like z2 and z3 respectively, and it is reasonable that all four examples in Figure 
31 should be 6th order figures.   

 

 The other issue in Figure 31 is that of scale or image size.  The power 
series first-term principle again provides the answer.  If one iterates zn/d instead 
of zn:  

     z’ = a*zn/d + c          (10) 

this is equivalent to choosing an a value smaller by a factor of d, or a’ = a/d.  The 
scale product equation then will be: 

  a’*Wan–1 = (a/d)*Wan–1 = K       or       a*Wan–1 = |d|*K       (11) 

where as before, Wa is the width of the image measured in some arbitrary but 
uniform manner.  The scale product a*Wan–1 will be larger than its value with zn 
by a factor of the magnitude of d.   
 

In sum, the quantity K = a*Wan–1/|d| is invariant for all functions that 
yield the same order Mandelbrot figure.  If d is negative, it effectively reverses 
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the sign of a, resulting in the symmetry–reversed Mandelbrot associated with 
negative a values in Figures 23–24. 

 Table 2 shows the experimental change in size of mature Mandelbrot 
figures as measured at a = 10, 100 and 1000, for various combinations of 
functions that yield 2nd, 3rd and 4th order overall.  For the first three examples of 
2nd order the scale product a*Wan–1 is predictably constant and has a value of 3.00 
within experimental errors of measurement of image size.  In the three 
subsequent cases the scale products a*Wan–1 remain constant while a is varied 
within a given function, but have values which are roughly 2, 3 and 6 times that 
observed for z2.  

Replacing each 2nd order function in Table 2 by its reduced function, or 
the first term of its power series from Table 1, leads to: 

       Function                             Reduced function 
(1)  z*z  —>   z2               n = 2 d = +1 
(2) (ez–1)*ln(z+1)   —>   z*z = z2               n = 2 d = +1 
(3)  cosec(z)*z3   —>   (1/z)*z3 = z2              n = 2 d = +1 
(4)  [1–cos(z)]*1  —>   (z2/2)*1 = z2/2     n = 2 d = +2 
(5)  sin(z)*[sin(z)/z]’  —>   z*(–z/3) = –z2/3             n = 2 d = –3 
(6)  [sin(z)/z]”*ln[cos(z)] —>   (–1/3)*(–z2/2) = +z2/6              n = 2           d = +6 

The overall order n is the sum of the orders of the individual functions, while the 
overall d value is the product of individual d values.  The complete scale 
product Equation 11 predicts that the scale product a*Wan–1 should be twice as 
large for case 4 above, three times as large for case 5, and six times as large for 
case 6, exactly as observed.  Furthermore, in case 5 the 2nd order Mandelbrot 
should be reversed left for right as its negative sign dictates.   

The second half of Table 2 tests the scale product equation for 3rd and 4th 
order iterations.  For the first two 3rd order cases, K = a*Wan–1/|d| is invariant 
and equal to ~11.5.  For the third example with d = +6, however, K at a = 10 is 
only 8.76, and does not rise to the expected ~11.5 until a is increased from 10 to 
100 to 1000.  Similar behavior is seen with the 4th order.  The first two examples, 
with d = +1, yield a uniform K = a*Wan–1/|d|= ~24.3.  But the last example, 
with d = –18, does not produce this expected K value until a is increased to 1000.   

In short, one can determine in advance how a mathematical function will 
behave upon iteration in Equation 8, by expressing it as a power series and 
replacing the function by the lowest-order term of the series, or its reduced 
function.  But this reduced function substitution holds only in the limit of large a 
values, with the threshold of "large enough" varying from one function to 
another.   
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TABLE 2.  MEASURED SIZE RELATIONSHIPS FOR 2ND , 3RD & 4TH ORDER  
 MANDELBROT FIGURES (ER = 10)  (a*Wan–1) 

Function n d  a        Wa        a*Wa n–1 |d| 
          

SECOND ORDER:        
z*z = z2 2 +1 10 0.3013 3.013 3.013  
   100 0.03001 3.001 3.001  
   1000 0.003007 3.007 3.007  
 (ez–1)*ln(z+1) 2 +1 10 0.3000 3.000 3.000  
   100 0.02982 2.982 2.982  
   1000 0.003013 3.013 3.013  
cosec(z)*z3 2 +1 10 0.3003 3.003 3.003  
   100 0.02994 2.994 2.994  
   1000 0.002993 2.993 2.993  
1*[1–cos(z)] 2 +2 10 0.5989 5.989 2.994  
   100 0.05995 5.995 2.998  
   1000 0.006002 6.002 3.001  
sin(z)*[sin(z)/z]’ 2 –3 10 0.8891 8.891 2.964  
   100 0.09047 9.047 3.016  
   1000 0.008982 8.982 2.994  
 [sin(z)/z]”*ln[cos(z)] 2 +6 10 1.7887 17.89   2.981  
   100 0.1798 17.98 2.997  
   1000 0.01804 18.04 3.007  
THIRD ORDER:        
z3*1 3 +1 10 1.070 11.45 11.45  
   100 0.3372 11.37 11.37  
   1000 0.1066 11.36 11.36  
z2*[ez–1] 3 +1 10 1.081 10.36 10.36  
   100 0.3403 11.58 11.58  
   1000 0.1069 11.43 11.43  
 [z–sin(z)]*cos(z) 3 +6 10 2.293 52.58 8.76  
   100 0.8102 65.64 10.94  
   1000 0.2606 67.91 11.32  
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FOURTH ORDER:        
z3*z = z4 4 +1 10 1.344 24.28 24.28  
   100 0.6230 24.18 24.18  
   1000 0.2897 24.31 24.31  
cotan(z)*z5 4 +1 10 1.329 23.47 23.47  
   100 0.6230 24.18 24.18  
   1000 0.2893 24.21 24.21  
 [sin(z)/z]’*[z–sin(z)] 4 –18 10 3.375 384.4 21.36  
    100 1.619 424.4 23.58  
   1000 0.7578 435.2 24.17  

 

7.  Iteration of General Power Series  

The preceding section is empirical: it is correct because it works.  But why 
should it work?  Why should a mathematical function, at large a, iterate as 
though it consisted only of the lowest term of its series expansion?  To 
understand this we must have a closer look at power series in general. 

(a)  z3+z2 

 Figures 33–34 compare iterations of z2,  z3+z2, and z3 from a = 0.0020 
through 10, all at ER=10.  As before, the quantity w is the width of the image 
frame, not that of the Mandelbrot figure itself.  All images shown in Figure 33 are 
to the same scale, image frame width w = 32, as is that in the first column of 
Figure 34.  The next three columns have been enlarged by 32/5, and the last 
column by an additional factor of 5.  At a = 0.00063 (not shown), all three images 
are perfect disks like that seen for z2 at a = 0.002.  As a rises through 0.002 to 
higher values, z3 is the first to evolve into a mature Mandelbrot figure, complete 
by a = 2/ER2 = 0.020, as expected from Equation 7.  Iteration of z3+z2 produces 
precisely the same results as z3 in this range of a.  As a continues to rise, z3 and 
z3+z2 follow the same steady shrinkage calculable from: a*Wa2 = constant.  But 
between a = 0.20 and 0.63 a transformation begins.  The z3+z2 figure loses its z3 
shape, and evolves into that of z2.  By ca. a = 8 that transformation is complete, 
and the figure is identical to a z2 Mandelbrot in both size and shape.   

At low values of a, the iterated z3+z2 function behaves as though its z2 
term did not exist, and at high value, its z3 term seemingly does not exist.  The 
iterated power series is dominated by its highest term at low a, and its lowest term at high 
a.   
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(b) z6–z4+z2 

Figures 35–36 illustrates the way in which each term of a three-term 
power series can dominate in its own region of a.  When the function F(z) = z6–
z4+z2 is iterated with ER= 10, a deformed, incomplete pentagonal figure such as 
that seen here for a = 1.5*10–6 evolves to completion as a rises to 2.0*10–5, exactly 
the point expected from a*ER5 = 2 for a simple z6 Mandelbrot.  (F(z) iteration 
images are in purple, while single-term zn reference images are in salmon.)  The 
higher power z6 term continues to dominate until around a = 0.1, where 
deformation begins that will lead to a 2nd order figure at large a.  Around 1.0 or 
1.5 the figure assumes a roughly triangular shape that is suggestive of a 4th order 
Mandelbrot, even with its vertex pointing to the right as would be expected for –
z4 with a negative value of a.  

Each of the three terms in the power series seemingly has its own domain 
of influence: highest term at low a, lowest term at high a, and (more 
approximately) intermediate term at intermediate a.   
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(c)  z10–z5–z2  and  (z10–z5–z2)/(z4+1)  

The iterations of z10–z5–z2 and (z10–z5–z2)/(z4+1)  in Figures 37–39 again 
test the idea that, in a three–term power series, the figure produced at 
intermediate a values bears at least a passing resemblance to that expected from 
just the middle term of the series, –z5 in this example.  They also examine what 
happens when a is varied during the iteration of the quotient of two power 
series, F(z)/G(z).  These figures display the results of iterating z10–z5–z2 (top, 
salmon) and (z10–z5–z2)/(z4+1) (bottom, yellow) at twelve different values of a, 
generally in tenfold increments, between 2*10–10 and 20.   

  (1) With z10–z5–z2, the highest term of the series prevails at low a values 
(Figure 37).  The image is that of a perfect 10th order Mandelbrot.  Furthermore, 
the complete, mature image first occurs at just the a value that would be 
expected from z10 alone:  a = 2/ER9 = 2*10–9.  Below this value the tips of the 
nine lobes are clipped by the escape radius (1*10–9), smoothed into hemispheres 
(2*10–10), or wiped out entirely on a smooth disk (not shown, but like the (z10–z5–
z2)/(z4+1) figure immediately below it).    
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 (2) As expected, the lowest term of the z10–z5–z2 series prevails at high a 
(Figure 39).  The iterated figure produced is identical in size and shape to that of 
–z2, reversed left/right as its negative sign requires.   

 (3) At intermediate a values, z10–z5–z2 undergoes a transition from the z10 
figure to that of –z2.  The z10 image remains up to ca. a = 0.02.  By a = 0.20 (Figure 
39) it has assumed approximately the diamond shape expected from the central 
term of the series, –z5, although this is less definitive than the two extreme 
images.   

(4) At low a values, the highest–power terms of (z10–z5–z2)/(z4+1) 
predominate in both numerator and denominator, as though the function being 
iterated were: z10/z4 =  z6.  The complete, mature 6th order Mandelbrot figure 
first appears at the a value expected for simple z6, or at: a = 2/ER5 = 2*10–5.  
Below this level the figure is clipped (1*10–5), smoothed (2*10–6) or totally 
degraded into a featureless disk (2*10–9). 

 (5) At high a values, (z10–z5–z2)/(z4+1) yields exactly the same reversed –
z2 image as does z10–z5–z2.  It behaves as though the lowest power term is 
dominant in both numerator and denominator, or as though the function iterated 
were:  –z2/1.   

 (6) For (z10–z5–z2)/(z4+1) the intermediate figure at a = 0.20 is more 
ambiguous.  It bears a limited resemblance to the –z5 diamond figure from z10–
z5–z2, but also resembles the +z6 figure from which it has evolved.   

Note also that Figure 38 illustrates the fact that a 10th order Mandelbrot 
figure shrinks less rapidly than does a 6th order figure, according to a*Wa9 = K 
rather than a*Wa5 = K.   

(d)   Σ n*zn and Σ zn/ n  with n from 2 to 40 

The concept of regions of dominance of highest and lowest power terms is 
given an especially stringent test in Figures 40–41.  Two 39–term power series 
have been constructed, an ascending series (top, salmon): 

F(z) = 2z2 + 3z3 + 4z4 + 5z5 +....+  38z38 + 39z39 + 40z40 

and a descending series (bottom, yellow): 

F(z) = z2/2 + z3/3 + z4/4 + z5/5 +....+ z38/38 + z39/39 + z40/40 
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Their iterations are compared with the results of simply iterating z2 and z40, at 
equivalent values of a and with the relevant multiplying coefficients of z2 or z40.   
The escape radius of ER=100 is well above the threshold ERm in all cases.  For 
both ascending and descending series, the image at a = 0.001 (Figure 40) is 
identical in both size and shape to that which is obtained by iterating 
0.001*40*z40 (top, green) or 0.001*z40/40 (bottom, violet).  At the other extreme, 
the image at a = 10 in Figure 41 is the 2nd order Mandelbrot obtained by iterating 
10*2*z2 and 10*z2/2 for ascending and descending series respectively.  But the 
intermediate transformation steps between the two extremes — 40th order at low 
a and 2nd order at high a — are quite different in these two test series.  The z40 
disk breaks apart and morphs into a z2 Mandelbrot more quickly for the 
ascending series than for the descending.  But the end points of the two 
iterations are the same.   

 The sizes of the final 2nd order images at a = 10 in Figure 41 also obey 
scale Equation 11.  The ascending series has a coefficient of 2, and hence d = 1/2 
= 0.5.  With the descending series, the z2 coefficient is 1/2 and d = 2.  Hence the 
scale equation for the high-a end of the ascending series is:  a*Wa = 0.5 K, and 
that for the descending is:  a*Wa = 2 K.  The measured width of the descending–
series image is four times as great as for the ascending series.  Identical numbers 
are obtained when one iterates the relevant single terms in Figure 41, 20*z2 for 
the ascending series (top, green) and 5*z2 for the descending (bottom, violet).   
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 Figure 42 shows how sensitive even a long 39–term power series is to the 
loss of its lowest–order terms.  From left to right, iterations are of the complete 
series, and those with the first, first two, or first three terms deleted.  At small a 
values (top row) the figure is completely independent of the loss of these low 
order terms; all that matters is the final 40th order term.  But at a = 100, each 
figure matches the order of its lowest remaining term, even though these terms 
had smaller coefficients than any of the other terms: 

Small–a                                                                                                     Large–a  
  Image                                     Series Iterated                                         Image 
    z40           2z2+3z3+4z4+5z5+6z6+7z7+8z8+9z9 +….+ 39z39+40z40          z2  

    z40                   3z3+4z4+5z5+6z6+7z7+8z8+9z9 +….+ 39z39+40z40          z3  

    z40                           4z4+5z5+6z6+7z7+8z8+9z9 +….+ 39z39+40z40           z4  

    z40                                   5z5+6z6+7z7+8z8+9z9 +….+ 39z39+40z40           z5  

At large a, elimination of low–order terms of the series completely 
changes the resulting figure, even though the coefficients of the term or terms 
eliminated are much smaller than those of the remaining terms.  But at small a 
values, the figures for all these series are identical, in this example that of a 40th 
order Mandelbrot.  
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8. Application to Infinite Series and Higher Mathematical Functions 

 In summary, iteration of a power series is a different matter from that of a 
single exponential term.  In the single–term case, constant a has no effect other 
than determining the size of the resulting figure.  But for a multi–term power series, 
the shape of the resulting Mandelbrot figure is very much dependent on the particular 
value of a.  The highest order term in the series dominates at low a, and the lowest 
order term at high a.  In both size and shape of the image, at large a the iterated 
figure is that which would be obtained if all terms except the lowest–power term 
did not exist.   

This behavior of power series is directly relevant to the issue of why a 
mathematical function can be replaced by the lowest term of its series expansion 
at large a.  With an infinite series expansion of a mathematical function there is 
no “highest term”; the series continues without limit. At low a the collection of 
intermediate power terms yields a complex figure whose structure cannot be 
predicted easily.  But as in all of the examples discussed above, in the limit of 
high a, only the lowest term of the power series matters; all other terms in the 
series can be ignored.  Hence the validity of the principle defined earlier:  In the 
limit of large a, a mathematical function can be replaced during iteration by the 
first or lowest term of its power series expansion, which is defined as its reduced 
function. 

 With this power series background one can understand the reduced-
function principle for predicting the results of iteration.  All of the 2nd order 
functions in Table 1 produce a 2nd order Mandelbrot figure when iterated 
because they commence with a z2 term.  So will two 1st order functions if 
combined as in Equation 8, becuase the overall order is the sum of individual 
orders.  A –1st order function such as cotan(z) iterated with a third order function 
such as [z–tan(z)] produces a 2nd order Mandelbrot.  Two 2nd order functions 
iterated together yield a 4th order Mandelbrot.  Furthermore, the size of the 
resultant image depends on the products of the denominators of these lowest-
power terms in the manner predicted by the full scale product Equation 11. 

 To illustrate these principles, consider the combination of [z–sin(z)] with 
various other functions in Figures 43–44.  [z–sin(z)] is third order, so when it is 
iterated with –1st, 0th, 1st, 2nd, 3rd, and 4th order functions, the results are the 2nd, 
3rd, 4th, 5th,  6th and 7th order Mandelbrot figures shown in Figure 44.  Even 
negative order and zero order functions “follow the rules” of adding exponents.   
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9. Synthesis of Higher Order Functions by Combining Power Series 

 Functions whose power series expansions are available in standard 
reference works are seldom greater than 2nd order.  But higher order compound 
functions can be generated artificially by subtracting pairs of functions whose 
power series have an identical initial term or terms.  1st order functions 1b 
through 1n in Table 1 can all be converted to 3rd order functions by subtracting z, 
thus eliminating the first term of the series as given.  The series expansion for [1–
cos(z)]/z was synthesized by subtracting the cos(z) series from 1, and then 
dividing all terms by z.   

Sec(z) and cosh(z) have their two first terms in common, so subtracting 
one from the other as in Figure 45 creates a 4th order function:  sec(z)–cosh(z), 
whose reduced function is +z4/6.  Similarly, adding [1–cos(z)] and ln[cos(z)] 
eliminates their first term and generates another 4th order function, 1–
cos(z)+ln[cos(z)],  whose reduced function is –z4/8.  Table 3 shows that the 
relative sizes of the three images in Figure 45 is dictated by the scale product 
equation and the divisors of their reduced functions: d = +1, +6 and –8 
respectively.  The reversal of the rightmost figure also is consistent with its 
negative d value.   
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TABLE 3.  TESTS OF SIZE RELATIONSHIPS IN 4TH AND 5TH ORDER ITERATIONS  
 (ER = 10)      (a*Wan–1) 

Function n d a Wa a*Wa n–1 |d| 
              
FOURTH ORDER:             
z4 4 +1 103 0.2898 24.30 24.30 
sec(z)–cosh(z) 4 +6 103 0.5267 146.1 24.35 
[1–cos(z)]+ln[cos(z)] 4 –8 103 0.5796 194.7 24.34  
FIFTH ORDER:        
z5 5 +1 103 0.4237 32.23 32.23 
arcsinh(z)–sin(z) 5 +15 103 0.8411 500.5 37.37 
arctan(z)–tanh(z) 5 +15 103 0.8460 512.2 34.15  
z5 5 +1 106 0.0754 32.32 32.32 
arcsinh(z)–sin(z) 5 +15 106 0.1483 483.7 32.25 
arctan(z)–tanh(z) 5 +15 106 0.1485 486.3 32.42  
 

The expected 4th or 5th order images are obtained in all cases above, and 
that for [1–cos(z)]+ln[cos(z)] is reversed as its negative d value predicts.  
Note from the bold face figures at lower right that the scale product 
equation becomes more accurate when a is increased from 103 to 106.   

      

 

In a similar manner the four combinations of sine– and tangent–related 
functions listed as 5b through 5e in Table 1 all have 5th order initial terms, 
+z5/15.  Iteration yields ideal 5th order Mandelbrots like that for z5 but larger in 
the way that the scale product equation and their 15–fold larger d values would 
predict (Figure 46).  It would be interesting to iterate the quadruple function:  
arcsinh(z)–sin(z)–arctan(z)+tanh(z), which has a reduced function of +(2/45)z7, 
and hence would yield a 7th order Mandelbrot with scale parameter d = 22.5.  
Regrettably, this calculation is beyond the abilities of either the Fractal Explorer or 
Fractal Domains programs.   
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Although arcsinh(z)–sin(z) and arctan(z)–tanh(z) reach the same limiting 
figure (Figure 46), their manner of getting there from the initial a = 0 parent disk 
is quite different (Figures 47–48).  The arcsinh(z)–sin(z)  parent disk at first 
collapses onto the horizontal axis.  By a = 3 a misshapen but recognizable square 
5th order Mandelbrot is visible at the origin, and it subsequently regularizes 
while the remaining fragments decay and vanish.  In contrast, the arctan(z)–tan(z) 
parent disk persists through a = 1 and more.  Beyond a = 5 the disk begins to 
shrink around the origin, but does not vanish to reveal a tiny central 5th order 
Mandelbrot until around a = 23.  Related functions arcsin(z)–sinh(z) and 
arctanh(z)–tan(z) are identical to these except for 90° rotation about the origin.  
These calculations were performed using ER = 10.  Altering ER produces minor 
changes as expected from the earlier discussion, but the overall differences in 
behavior remain.   
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These results emphasize the principles that (a) replacement of a given 
function by its reduced function is an approximation that only becomes fully 
valid in the limit of large a, and (b) the rate and pathway of convergence to this 
limit are very much a property of the individual function examined.  For the 4th 
order examples of Table 3, the observed (a*Wan–1)/|d| =  24.3 seen with d = 1 is 
satisfactorily duplicated  by higher d values at a = 1000, whereas for the 5th order 
functions that we have just been examining, (a*Wan–1)/|d| is not yet constant at 
a = 1000, and only becomes so two or three orders of magnitude beyond.   

10. The Natural History of Mandelbrot Figures 

 All of the foregoing can be summarized in the following seven principles.  
With these principles one can understand how iterations behave at higher 
powers, how they depend on positive and negative scale coefficients a, and why 
simple power series and various higher mathematical functions iterate to 
produce the images that are encountered: 

 I. Iteration of the nth order function  z’ = a*zn + c  results in a Mandelbrot 
figure displaying n–1 lobes of density extending outward around its perimeter, 
separated by n–1 deep tapered junctions.  For negative values of a, the figure is 
identical to that for positive values, but rotated in a way that interchanges 
positions of lobes and junctions.   

 II. Practical  determination of whether a point is to be included or 
excluded from the Mandelbrot set involves choosing an escape radius, ER.  This 
ER must remain larger than the Mandelbrot image; if not, then the image is 
truncated and degraded.  The minimum escape radius ERm depends on both 
order, n, and scale factor, a, according to: ERmn–1 = 2/a.  If the chosen ER is larger 
than this minimum value, then it exerts no effect on the Mandelbrot image.  A 
truncated or incomplete Mandelbrot image can be given its mature form by 
increasing either a or ER or both, to the point where once again, a* ERn–1= 2 .      

 III. As a increases, the Mandelbrot figure shrinks according to the scale 
product equation: a*Wan–1 = K,  where K is a constant for a given order, n, and 
for a given manner of measuring figure size.  Higher order Mandelbrots shrink 
less rapidly than lower order.  For simple zn Mandelbrots, the choice of a has no 
effect on the figure produced other than that of size, above the threshold escape 
radius, ERm.  

 IV.  If zn in the iteration equation is replaced by zn/d, then constant K in 
the scale product equation is increased by the same factor, or: a*Wan–1 = |d|*K. 

 V.  When a multi–term power series is iterated, the highest power term 
dominates at low a values, and the lowest order term takes over completely in 
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the limit of large a.  A mathematical function that can be expressed as an infinite 
series can be considered as a power series with no maximum term.  Only the 
dominance of the lowest power term at large a remains.   
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 VI.  When the iteration equation is generalized to: z’ = a*f(z)*g(z) + c = 
a*F(z) + c, each of the functions f(z) and g(z) can be regarded as exhibiting a 
characteristic order.  If their combined order is n, then the ultimate Mandelbrot 
figure at large values of a or ER will be identical to that produced by iterating a 
simple zn, except for scale.  

 VII.  By principle V above, the order of a chosen function f(z) is the order 
of the lowest term in its power series expansion.  In fact, the first term of that 
series can be designated as the reduced function, and where behavior at large a or 
ER values is concerned, the reduced function can be substituted for the function 
itself.  If f(z) = [1–cos(z)] = +z2/2!–z4/4!+… and g(z) = [z–tan(z)] = –z3/3–
(2/15)z5+...  then iteration of [1–cos(z)]*[z–tan(z)] for large values of a is the same 
as iterating:  (z2/2!)*(–z3/3) or –z5/6. The result will be a 5th order Mandelbrot 
figure, with lobes and junctions interchanged as the minus sign dictates.  It will 
obey a scale product equation of:  a*Wa4 = 6*K, where K is the scale product 
when a simple z5 is iterated. 

 The 2nd order Mandelbrot figure of Figure 3 has been an object of 
intensive study over the past 20 years, with its advocates marveling over the 
intricacy and beauty of its many levels of detail.  Yet each of the higher 
Mandelbrot figures described in this paper is its equal in complexity, beauty 
and interest, and just as worthy of careful study.  Studying only the z2 set to the 
exclusion of all others is as limiting as trying to compose a Bach fugue using 
only one note.  The title page drawing of Figure 1 shows a small part of the 
intricacy contained in the iteration of [z–sin(z)]*arctan(z) with a = 1.0.  Figure 49 
might be termed the “national flag of the Republic of Fractovia”, and suggests 
that Fractovia must be Scandinavian.  Figure 50 shows its source in the iteration 
of z*arctanh(z) with a = 0.90.  The “flag” is found just to the right of a black object 
that by a = 2.0 will have evolved into a mature 2nd order Mandelbrot.   
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One’s first impression of fractal figures is one of enormous complexity, 
with endless new details no matter how much the figure is magnified.  Iterations 
using various powers of z, or various mathematical functions, appear to be as 
intricate and confusing as the fractals themselves.  But a pleasing regularity 
emerges, and fractal iteration processes are seen to follow simple and well–
defined rules.  There is indeed order amidst the chaos, and it is this order that 
gives fractal geometry its strong attraction. 

APPENDIX:  COMPARISON OF RESULTS  WITH TWO DIFFERENT 
FRACTAL PROGRAMS 

 This analysis was carried out with the aid of two different but equally 
useful programs for the Macintosh:  Fractal Domains by Dennis C. De Mars 
(demars@kagi.com), and Fractal Explorer by Peter Stone 
(peterstone@optusnet.com.au).  FD is shareware, available from 
http://www.fractaldomains.com.  FE is freeware, available from 
http://members.optusnet.com.au/~peterstone.  FD is especially useful in 
allowing one to iterate any desired polynomial or quotient of two polynomials.  
FE, in turn, provides access to a vast array of trigonometric, exponential and 
logarithmic functions.  Both programs have straightforward (although quite 
different) construction, offer excellent color graphics, and permit searching 
through fourteen orders of magnification.   

 These two different but complementary programs offer the opportunity of 
independent testing of the principal ideas of this paper.  Figures 51–52 compare 
results with Fractal Explorer (left) and Fractal Domains (right) of iterating the basic 
2nd order equation:  z’ = a*z2 + c  for various values of a from 0.001 to 4.0.  
Equivalent parameters have been used in both cases: an escape radius of ER = 10 
for FD and an escape constant EC = ER2 = 100 for FE.  Resolution (res) in FD is a 
measure of picture area, and is proportional to the square of the picture width 
(w) employed by FE.  Identical magnifications are used in equivalent figures 
obtained by both programs.  In both FE and FD, the 2nd order figure at or near a = 
0 is a featureless black disk because ERm is much larger than 10.  By a = 0.1 this 
disk has evolved into an incomplete 2nd order Mandelbrot figure, identical in 
size and shape in the two programs.  By a = 1.0 the figure has reached its final 
mature form, and only shrinks in size thereafter according to the scale product 
Equation 6.   
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 Figures 53–54 offer an even sterner program comparison: iteration of the 
two–term power function  z’ = a*(z2–z5) + c  at various a values.  For FD this is 
accomplished by defining the function in a straightforward manner as:  a*z2–a*z5.  
With FE the process is a little more involved, requiring iteration of the product 
of two built–in functions, z2 and z3–1, using negative a values—i.e.:  –a*z2*(z3–1) 
= a*(z2–z5).  But the results with the two programs are identical in size and shape 
at equivalent a values.  At a = 0.00001 the image is distorted and smoothed 
because ER = 10 is too small.  Around a = 0.01 a classic 5th power Mandelbrot 
figure is encountered, even being rotated 45° from a square to the diamond 
shape as predicted by the minus sign in –z5.  The two programs continue 
through the same elongated intermediate figure around a = 1, as the 5th power 
Mandelbrot converts into a 2nd power Mandelbrot that is complete around a = 
8.0.  Other conclusions of this paper, where possible, have also been verified 
using both programs.  These two programs, FD and FE, are highly 
recommended to anyone with even a casual interest in fractal geometry. 
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