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ABSTRACT

Julia sets are fractal subsets of the complex plane defined
by a simple iterative algorithm. Julia sets are specified by
a single complex parameter and their appearances are
indexed by the Mandelbrot set. This study presents a
simple generalization of the quadratic Julia set that re-
quires two complex parameters. The generalization causes
the Mandelbrot set indexing the generalized Julia sets to
become 4-dimensional and hence difficult to use as a visual
index. An evolutionary algorithm is used to search the
space of generalized quadratic Julia sets. A type of fitness
function is presented that permits the artist exert some
control over the appearance of the resulting Julia sets.
The impact of different versions of the fitness function on
the resulting Julia sets is explored. It is found that the
designed fitness functions do give substantial control over
the appearance of the resulting fractals.

I. INTRODUCTION

A quadratic Julia set with parameter p € C is the subset
of the complex plane C for which the Julia sequence:
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fails to diverge to points arbitrarily far from the origin of the
complex plane. The sequence starts with a given point z in the
complex plane and then iteratively squares the current value
and adds in the parameter p. It is a fact that if p is in the
Mandelbrot set[9] then the quadratic Julia set (hence: Julia
set) is a connected subset of the plane, otherwise it is a fractal
dust of isolated points. A Julia set is defined by the two real
parameters ¢ and b where p = a + bi. The appearance of a
Julia set with parameter p is similar to the local appearance
of the Mandelbrot set at mu, meaning that the Mandelbrot
set visually indexes the Julia sets. Examples of this indexing
appear in Figure 1.

The indexing of Julia sets by the Mandelbrot set means
that the search for interesting Julia sets can be undertaken
as a search of the Mandelbrot set. The Mandelbrot set,
while infinitely complex [1], is two-dimensional and so it
can be searched directly with software. In this study we
present a generalization of the Julia set that is indexed by
a 4-dimensional Mandelbrot set and so in greater need of
automatic search methods. This search is performed with an
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evolutionary algorithm derived from the one presented in [1].
The generalization of the Julia set used in this study requires
two complex parameters w; and ws. The members of the
generalized Julia set are those complex numbers z for which
a sequence fails to diverge. The new sequence is:
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Rather than adding a single complex parameter after each
squaring, the two complex parameters are added alternately.
This generalization permits Julia sets that have connected
regions which are not themselves connected.

This paper is one of many that evolves fractals, but it
is in the rarer of two major categories of such efforts. Be-
cause writing a fitness function that can judge if a fractal
is interesting is difficult (and not a well-defined problem),
the most common sort of fractal evolution is human-in-the-
loop evolution in which a human being is used as the fitness
function. Examples of human-in-the-loop evolution include
systems that use genetic programming [10] and which opti-
mize parameters of (generalized) Mandelbrot sets to generate
biomorphs [13]. Fractals that are located by evolutionary real
parameter optimization to match pictures of faces appear in
[14].

Iterated function system fractals, explained in detail in
[8] are the target of evolution in [12] and were used to
perform fractal rendering of DNA sequences in [6]. A hybrid
representation using both finite state machines and iterated
function systems was evolved to render fractals from different
types of DNA in [5] and [7].

L-systems or Lindenmayer systems are grammatical models
that can be used as a representation for the evolution of
fractals. Grammatical systems start with an initial string.
Characters within the string are expanded by the rules of the
grammar, iteratively, to obtain a single string. The characters
are then interpreted by a renderer, such as a graphic turtle, to
yield a fractal. Such evolution of L-systems that are rendered



Fig. 1.

as plants by a graphic turtle is presented in [2], [3]. Fractal
L-systems that yield music appear in [4].

The remainder of this study is structured as follows. Section
II reminds those readers that have not used complex arithmetic
recently of the details as well as explaining how generalized
Julia sets are rendered for display. Section III defines the
fitness function used to drive evolutionary search of the space
of generalized Julia sets. Section IV gives the experimental de-
sign, specifying the evolutionary algorithm and its parameters.
Section V gives the results, including visualizations. Section
VI gives possible next steps for this line of research.

II. COMPLEX ARITHMETIC AND JULIA SETS

The complex numbers are an extension of the familiar real
numbers (those that represent distances or their negatives)
achieved by adding in one “missing” number i = +/—1
and then closing under addition, subtraction, multiplication,
and division by non-zero values. The number i is called
the imaginary number. A complex number z is of the form
z = x + 1y where = and y are real values. The number z is

Indexing of Julia Sets by the Mandelbrot set. Julia sets are displayed as small insets in the Mandelbrot set.

called the real part of z, and y is called the imaginary part
of z. The arithmetic operations for complex numbers work as
follows:

(a+ bi) + (c + di)

(a+bi)— (c+di)

(a+bi)x(c+di) =
a+ bi
c+di

(a+¢)+ (b+d)i
(a—c)+ (b—d)i

(ac — bd) + (ad + be)i
ac+ bd bc —ad .
V2 +d2 Ve ~|—le

One of the pleasant properties of the complex numbers is
that they place an arithmetic structure on points (z,y) in the
Cartesian plane so that arithmetic functions over the complex
numbers can be thought of as taking points (z,y) (represented
by x+ws1) in the plane to other points in the plane. Because the
complex numbers have this one-to-one correspondence with
the points of the Cartesian plane, they are also sometimes
referred to as the complex plane. Complex fractals are easier
to define when it is thought of as consisting of points in the
plane. The absolute value of a complex number z = x + yi



Fig. 2. Thumbnails of the best-of-run generalized Julia sets for the fitness function using the continuous plus mask.

is denoted in the usual fashion |z| and has as its value the
distance /22 + y? from the origin of the complex plane.

Suppose we are examining a point z in the plane for
membership in a Julia set or generalized Julia set. The iteration
number for a point is the number of terms in the relevant
sequence (either Equation 1 or Equations 2-7) before the point
grows to an absolute value of 2 or more. Points not in the
Julia set thus have finite iteration numbers while points in the
set have infinite iteration numbers. Iteration numbers are used
for coloring visualizations of the set. In this study a periodic
palette is used to color all such visualizations with points
with infinite iteration numbers colored blue. Iteration numbers
above 200 are considered infinite for purposes or rendering
the Julia sets; since infinite numbers of iterations cannot be
computed a bail-out value like 200 is required.

III. FITNESS FUNCTION DESIGN

The fitness function used to locate interesting generalized
Julia sets must transform four real (two complex) parameters
into a scalar fitness value. Ideally the artist should be granted
some control over the appearance of the fractals located. This
can be accomplished with a variation of the fitness function
used in [1]. A grid of points, either 11 x 11 or 15x 15 is placed
on a square subset of the complex plane with corners 0.8+0.8:
and —0.8 — 0.8¢. For a given set of parameters defining a
generalized Julia set, the iteration values for the points in the
grid are computed. A mask is used to specify desired iteration
values on the grid points. Fitness is the average, over the grid
points, of the squared error of the true iteration value and
the desired value specified by the mask. True iteration values
are capped at n = 200 in this study - any point with an
iteration value of 201 or more is assumed to be a member
of the generalized Julia set.

The mask specifies where points with various approximate



Fig. 3. Thumbnails of the best-of-run generalized Julia sets for the fitness function using the continuous times mask.

iteration values are to be in the evolved fractals. This ability
to specify the behavior of the fractal on the grid permits the
artist some control over the appearance of the resulting Julia
set. Following is a list of the names and mask specifications
for the fitness functions used in this study.

1) Continuous Times Mask (Size 11 x 11). The name of
this mask reflects the fact it has a profile similar to a X.

200 55 21 13 10 9 10 13 21 55 200
55 200 77 35 24 21 24 35 77 200 55
21 77 200 111 65 55 65 111 200 77 21
13 35 111 200 155 132 155 200 111 35 13
10 24 65 155 200 193 200 155 65 24 10
9 21 55 132 193 200 193 132 55 21 9
10 24 65 155 200 193 200 155 65 24 10
13 35 111 200 155 132 155 200 111 35 13
21 77 200 111 65 55 65 111 200 77 21
55 200 77 35 24 21 24 35 77 200 55

200 55 21 13 10 9 10 13 21 55 200

2) Continuous Plus Mask (Size 15 x 15). This mask is
vertically and horizontally mirror-symmetric and so the
last seven rows and columns are not shown. Its name
reflects the fact is has a profile similar to a +.Reflecting

the mask shown about its last row and then its last
column, without copying the last row or column, will
rebuild the full mask.

21 | 25 | 30 | 39 | 53 | 76 | 110 | 130
25 | 28 | 34 | 42 | 56 | 80 | 114 | 134
30 | 34 | 39 | 47 | 61 85 | 119 | 139
39 | 42 | 47 | 56 | 70 | 94 | 127 | 148
53 | 56 | 61 | 70 | 84 | 108 | 141 | 162
76 | 80 | 8 | 94 | 108 | 132 | 165 | 186
110 | 114 | 119 | 127 | 141 | 165 | 199 | 219
130 | 134 | 139 | 148 | 162 | 186 | 219 | 240

3) Twin Hill Mask (Size 15 x 15). This mask is symmetric
under an 180 degree rotation so the last seven columns
are not shown. It is named for having two hills in the
middle of the first and fourth quadrant of the mask.



41 51 | 61 | 68 | 68 | 62 | 54 | 45

51| 67 | 8 | 101 | 102 | 89 | 71 | 56
61 | 86 | 121 | 153 | 154 | 124 | 91 | 67
68 | 101 | 153 | 208 | 210 | 157 | 107 | 76
68 | 102 | 154 | 210 | 211 | 159 | 110 | 80
62 | 89 | 124 | 157 | 159 | 131 | 99 | 78
541 71 | 91 | 107 | 110 | 99 | 85 | 74

45| 56 | 67 | 76 | 80 | 78 | 74 | 73
37| 44 | 52 | 58 | 62 | 65 | 68 | 74
31| 37 | 42 | 47 | 52 | 57 | 65 |78
271 31 | 35 | 40 | 45 | 52 | 62 | 80
241 27 | 30 | 35 | 40 | 47 | 58 |76
21| 23 | 27 | 30 | 35 | 42 | 52 | 67
18| 21 | 23 | 27 | 31 | 37 | 44 | 56
16 | 18 | 21 | 24 | 27 | 31 | 37 |45

4) Strict Plus Mask (Size 11 x 11). This mask has 200s
in the sixth row and column and zeros elsewhere. It is
similar to the continuous plus mask, but with only two
values.

5) Inverse Plus Mask (Size 11 x 11). This mask imple-
ments a valley shaped line a +.

200 200 200 100 75 50 75 100 200 200 200
200 200 200 100 75 50 75 100 200 200 200
200 200 200 100 75 50 75 100 200 200 200
100 100 100 100 75 50 75 100 100 100 100
75 75 75 75 1 1 1 50 75 75 75
50 50 50 50 1 1 1 50 50 50 50
75 75 75 75 1 1 1 75 75 75 75
100 100 100 100 75 50 75 100 100 100 100
200 200 200 100 75 50 75 100 200 200 200
200 200 200 100 75 50 75 100 200 200 200
200 200 200 100 75 50 75 100 200 200 200

The evaluation square of —0.8—0.87 to 0.840.8¢ was chosen
by trial and error experimentation. If too large a square is used
than the behavior far from the origin of the complex plane
dominates the fitness function and all fractals located appear
as simple lagoons. If too small a square is used then the overall
appearance of the Julia set becomes visually unrelated to the
mask.

IV. SPECIFICATION OF EXPERIMENTS

The evolutionary algorithm operates on a population of 800
structures. Parameters for generalized Julia sets are stored as
an array (a,b,c,d) where w1 = a + bi and wy = ¢ + di.
Variation operators consist of two point crossover operating
on the array of four reals and a single point mutation that
adds a Gaussian with a variance of 0.1 to one of the four
real parameter selected uniformly at random. The model of
evolution is size seven single tournament selection. A group
of seven distinct population members is selected. The two best
are copied over the two worst and then the copies are subjected
to crossover and a single mutation, each.

The evolutionary algorithm is steady state [11], proceeding
by mating events in which a single tournament is processed.
Evolution continues for 50,000 mating events and then the
most fit (lowest fitness) individual is saved. In each experiment
thirty-six independent runs are performed. The resulting gen-
eralized Julia sets are then thumb-nailed. The fitness functions
used are described in Section III. They all minimize the

average squared difference between the iteration behavior of
the fractal on a grid of sample points and a mask that specifies
a desired behavior.

V. RESULTS AND DISCUSSION

As with the Mandelbrot sets located in [1], final fitnesses
varied considerably within the runs done for each of the fitness
functions, suggesting that the fitness landscape for generalized
Julia sets using any of these fitness functions is rugged. The
thumbnails of the fractals located also show a substantial
diversity of appearance within the fractals located by a single
fitness function. It seems likely that the fitness landscape is
itself a fractal, as it is an algorithmic shadow of a type of
Mandelbrot set. This 4-dimensional Mandelbrot set, alluded to
earlier in the manuscript, can be understood as follows. Each
set of four parameters (a, b, ¢, d) yields a generalized Julia set.
If we fix w; = a + bt and then check the iteration value of
wg = ¢+ di using ws as both the point being tested and the
second Julia parameter then the points that fail to diverge are a
Mandelbrot set. The points tested depend on all the parameters
a,b,c and d and so the set is four dimensional. The role of
wi and ws can be interchanged but this yields a different
parameterization of the same 4 dimensional Mandelbrot set.

Looking at Figures 2-6 and comparing the within-fitness-
function variation in appearance compared with the between-
fitness-function variance it is clear that the different masks
exert substantial control over the character of the fractals
located. The fractals associated with the different masks can
be recognized as distinct groups by casual inspection.

The results presented represent a successful controlled
search of a 4-space of generalized Julia sets. The mask fitness
functions give the artist input while still leaving a rich space
of fractals that are optima (probably local optima) of the
fitness function. The difference between the continuous plus
mask, Figure 2 and the strict plus, Figure 5, is marked. The
softer plus-shaped mask locates “softer” fractals. All five of
the masks used in the study yield different appearances; some
are more likely to relocate fractals with similar appearances.

Recall that a Julia set is either single connected set or is
a dust of isolated points. Many of the fractals located in this
search, e.g. the entire top row in Figure 3, have internal regions
with positive area that are disconnected from one another. This
means that the generalized Julia sets being located are not, in
fact, standard Julia sets. The first author has spent hundreds
of hours generating Mandelbrot, Julia, and generalized Julia
sets. The fourth image from the left in the top row of Figure
5 is novel in its closeness to an actual plus sign. This shape
is either unavailable or difficult to locate. Many others among
the located shapes are similarly unfamiliar.

Examine Figure 6. The fractals located fall into three broad
categories; the most numerous is exemplified by the first
image in the first row; the second by the first image in the
second row; the third by the second image in the third row.
Examination of the numerical parameters show that these
families contain cluster of points in parameter space, but in
some cases more than one cluster. The vertical flip of the first



Fig. 4. Thumbnails of the best-of-run generalized Julia sets for the fitness function using the twin hill mask.

group of similar fractals distinguished two cluster but there
are others. This in turn suggests that the search space itself
may have interesting symmetries even after being run through
the mask-based fitness functions.

An interesting aspect of the type of evolutionary search
presented here is the new role of local optima. The mask-
based fitness functions are not exact specifiers of what is
desired. They are more like “guidelines”. This means that
the local optima of these fitness functions may actually have
artistically greater merit than the global optima. This is very
different from standard evolutionary search in which local
optima can be an absolute bane of effective search. This is
also probably good news given the probable complexity of
the fitness landscape; locating any global optima is likely to
be very difficult. The fitness landscape contains, for example,
a transformed version of the Mandelbrot set.

The search of the space of generalized Julia sets presented
here is an example of an automatic (as opposed to human-in-

the-loop) fitness function for locating artistically interesting
images. It gives the artist a tool to guide the search in the
form of the masks, but does not require the artist’s attention
throughout evolution.

VI. NEXT STEPS

The fractal evolution techniques used here are intended as
a technique for use by artists. Various evolved art contests
held at the congress on evolutionary computation and the Evo-
MusArt conferences have stimulated a good deal of interest in
evolved art as a technique. With this in mind several possible
direction for the extension of this research follow.

The simplest extension lies in the fact that quadratic Julia
sets are simply one of an infinite number of types of Julia
set. Each possible power, cubic, quartic, etc. yield their own
Mandelbrot set, indexing a collection of Julia sets. Similarly,
Julia sets can be derived from transcendental functions such
as e, Sin(z), etc. Each of these is its own domain for



Fig. 5.

evolutionary search.

An obvious extension comes from continuing the gener-
alization process for Julia sets. The generalized Julia sets
in this paper use, alternately, two complex parameters when
generating the sequenced used to test for set membership
where a standard Julia set uses one. An n-fold, rather than
two-fold, alternation of constants could be used. Likewise a
set of constants could be added into terms of the series in
a pattern rather than in strict alternation or rotation. Each of
these variations has a simple realization as a real-parameter
optimization problem using the mask fitness function.

The masks tested in this study are a small set, designed
using the intuition of the authors. A vast number of other
masks are possible. One possibility is to used an existing gen-
eralized Julia set as a source of a mask. The artist would hand-
select a set of parameters that yield an interesting generalized
Julia set. The iteration values of this Julia set would then be
used as a mask, permitting evolutionary generalization of the

Thumbnails of the best-of-run generalized Julia sets for the fitness function using the strict plus mask.

hand-selected fractal. This proposed technique would require
a parameter study on the number of sample points using in the
mask. Too few points and the resulting generalized Julia sets
will likely bear no resemblance to the original one. To many
sample points and the ability, visible in the thumbnails in this
study, to locate nearly identical Julia sets may dominate the
search.

Finally both authors feel that automating the selection of a
coloring algorithm is a possibly difficult but rewarding avenue
for future research. This might be a natural place for human-in-
the-loop evolution or it might be possible to select a feature set
and make chromatic analogies with existing pictures thought
to be chromatically balanced.
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